![新人教A版 必修5 高中数学第二章数列2.2.1等差数列同步作业(含解析) 练习01](http://img-preview.51jiaoxi.com/3/3/5995141/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新人教A版 必修5 高中数学第二章数列2.2.1等差数列同步作业(含解析) 练习02](http://img-preview.51jiaoxi.com/3/3/5995141/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新人教A版 必修5 高中数学第二章数列2.2.1等差数列同步作业(含解析) 练习03](http://img-preview.51jiaoxi.com/3/3/5995141/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版新课标A必修52.2 等差数列同步练习题
展开等 差 数 列
(30分钟 60分)
一、选择题(每小题5分,共30分)
1.已知等差数列{an}的通项公式an=3-2n,则它的公差d为 ( )
A.2 B.3 C.-2 D.-3
【解析】选C.由等差数列的定义,得d=a2-a1=-1-1=-2.
2.(2019·嘉兴高一检测)等差数列{an}中,已知a3=7,a5=13,则a7= ( )
A.16 B.17 C.18 D.19
【解析】选D.由等差数列的性质可得2a5=a3+a7,
所以a7=2a5-a3=19.
3.已知数列{an}是等差数列,a4=25,a7=13,则过点P(3,a3),Q(5,a5)的直线斜率为
( )
A.4 B. C.-4 D.-
【解析】选C.由已知数列{an}是等差数列,所以an是关于n的“一次函数”,其图象是一条直线上的等间隔的点(n,an),所以过点P(3, a3),Q(5,a5)的直线,即过点(4,25),(7,13)的直线,所以直线斜率k==-4.
4.等差数列{an}中,若a4=3,则a2+a3+a7= ( )
A.6 B.9 C.12 D.15
【解析】选B.因为a4=3,所以a2+a3+a7=a4-2d+a4-d+a4+3d=3a4=3×3=9.
5.(2019·上海高一检测)已知数列是等差数列,数列分别满足下列各式,其中数列必为等差数列的是 ( )
A.bn=|an| B.bn=
C.bn= D.bn=-
【解析】选D.设数列的公差为d,
选项A,B,C,都不满足bn-bn-1=同一常数,所以三个选项都是错误的;
对于选项D,bn-bn-1=-+==-,
所以数列必为等差数列.
6.在数列{an}中,a1=2,2an+1-2an=1,则a101的值为 ( )
A.49 B.50 C.51 D.52
【解析】选D.因为an+1-an=,
所以数列{an}是首项为2,公差为的等差数列,
所以an=a1+(n-1)·=2+,
所以a101=2+=52.
二、填空题(每小题5分,共10分)
7.设等差数列{an}满足:a1+a2=7,a1-a3=-6,则a5=________.
【解析】因为等差数列{an}满足:a1+a2=7,a1-a3=-6.
所以,
解得a1=2,d=3,
所以a5=a1+4d=2+4×3=14.
答案:14
8.等差数列1,-1,-3,-5,…,-89的项数为________.
【解析】因为a1=1,d=-1-1=-2,
所以an=a1+(n-1)d=-2n+3.
由-2n+3=-89,得n=46.
答案:46
三、解答题(每小题10分,共20分)
9.(2019·临沂高二检测)已知等差数列满足a1+a2=10,a4-a3=2.
(1)求首项及公差;
(2)求的通项公式.
【解析】(1)设等差数列的公差为d.
因为a4-a3=2,所以d=2.
又因为a1+a2=10,所以2a1+d=10,故a1=4.
(2)由(1)可知an=4+2(n-1)=2n+2(n=1,2,…).
10.(1)若{an}是等差数列,a15=8,a60=20,求a75.
(2)已知递减等差数列{an}的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?
【解析】(1)设{an}的公差为d.
由已知得
解得
所以a75=a1+74d=+74×=24.
(2)由已知
所以
解得或
因为数列{an}是递减等差数列,所以d<0,a1=11,d=-5,
所以an=11+(n-1)·(-5)=-5n+16,
即等差数列{an}的通项公式为an=-5n+16.
令an=-34,即-5n+16=-34,得n=10,
所以-34是数列{an}的第10项.
(45分钟 75分)
一、选择题(每小题5分,共25分)
1.(2019·蚌埠高一检测)已知等差数列{an}的前三项依次为-1,1,3,则此数列的通项公式为 ( )
A.an=2n-5 B.an=2n-3
C.an=2n-1 D.an=2n+1
【解析】选B.等差数列{an}中,a1=-1,a2=1,可得d=a2-a1=2,
由通项公式可得an=a1+(n-1)×d=-1+2(n-1)=2n-3.
2.(2019·乌鲁木齐高一检测)若三角形的三个内角成等差数列,则第二大的角度数为 ( )
A.30度 B.45度
C.60度 D.75度
【解析】选C.设三个角依次为A、B、C且A<B<C,则有,解得B=60°,因此,第二大的角度数为60度.
3.在等差数列{an}中,a2,a14是方程x2+6x+2=0的两个实根,则= ( )
A.- B.-3 C.-6 D.2
【解析】选A.由于a2,a14是方程x2+6x+2=0的两个实根,所以a2+a14=2a8=-6,a8=-3,a2·a14=2,
所以==-.
4.在等差数列{an}中,已知a1=,a2+a5=4,an=33,则n等于 ( )
A.48 B.49 C.50 D.51
【解析】选C.因为a1+d+a1+4d=4,且a1=,
所以d=,
又因为an=a1+(n-1)d=+(n-1)×=33,
即n=50.
5.设{an}是等差数列,下列结论中正确的是 ( )
A.若a1+a2>0,则a2+a3>0
B.若a1+a3<0,则a1+a2<0
C.若0<a1<a2,则a2=
D.若a1<0,则(a2-a1)(a2-a3)>0
【解析】选C.对a1=2,a2=-1,a3=-4,选项A,B不成立.选项C,由等差中项的定义知,a2=,故C正确.选项D,(a2-a1)(a2-a3)=-d2≤0,不正确.
二、填空题(每小题5分,共20分)
6.已知{an}为等差数列,若a2=2a3+1,a4=2a3+7,则a3=________.
【解析】因为{an}为等差数列,a2=2a3+1,a4=2a3+7,
所以,
解得a1=-10,d=3,
所以a3=a1+2d=-10+6=-4.
答案:-4
7.已知数列{an}中,a3=2,a7=1,且数列为等差数列,则a5=________.
【解析】由数列为等差数列,
则有+=,可解得a5=.
答案:
8.数列满足:log2an+1=1+log2an,若a3=10,则a8=________.
【解析】log2an+1=1+log2an,
所以log2an+1-log2an=1,
所以为等差数列,公差为1,第三项为log210,
所以log2a8=log210+5,
所以a8=320.
答案:320
9.在等差数列{an}中,若a1+a2=3,a3+a4=5,则a7+a8等于________.
【解析】设公差为d,则因为a1+a2=3,a3+a4=5,
所以2a1+d=3,2a1+5d=5,
所以d=,即得a1=,
所以a7+a8=2a1+13d=2×+13×=9.
答案:9
三、解答题(每小题10分,共30分)
10.已知数列{an}中,a1=-1,an+1·an=an+1-an且Cn=,证明{Cn}是等差数列.
【证明】因为an+1·an=an+1-an,
所以-=1,
即-=-1,
故Cn+1-Cn=-1,
因此{Cn}是等差数列.
11.已知等差数列{an}中,a15=33,a61=217,试判断153是不是这个数列的项,如果是,是第几项?
【解析】设首项为a1,公差为d,
由已知得,
解得,
所以an=-23+(n-1)×4=4n-27,
令an=153,即4n-27=153,
解得n=45,
所以153是该数列的第45项.
12.已知数列{an}满足a1=3,an·an-1=2an-1-1.
(1)求a2,a3, a4;
(2)求证:数列{}是等差数列,并求出{an}的通项公式.
【解析】(1)因为an·an-1=2an-1-1,a1=3,
所以a2=,a3=,a4=.
(2)证明:易知an-1≠0,an=2-.
当n≥2时,
-=-=-=-=1,
所以{}是以=为首项,以1为公差的等差数列,
=+(n-1)·1=n-,
所以an=+1=.
【补偿训练】
已知数列{an}满足:a1=10,a2=5,an-an+2=2(n∈N*).求数列{an}的通项公式.
【解析】因为a1=10,a2=5,an-an+2=2(n∈N*),
所以数列{an}的奇数项、偶数项均是以-2为公差的等差数列.
当n为奇数时,an=a1+×(-2)=11-n,
当n为偶数时,an=a2+×(-2)=7-n,
所以an=
2020-2021学年2.3 等差数列的前n项和当堂达标检测题: 这是一份2020-2021学年2.3 等差数列的前n项和当堂达标检测题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教版新课标A必修52.4 等比数列课时作业: 这是一份高中数学人教版新课标A必修52.4 等比数列课时作业,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学2.3 等差数列的前n项和课时训练: 这是一份高中数学2.3 等差数列的前n项和课时训练,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。