2021年重庆市巴南区春招数学试卷
展开2021年重庆市巴南区春招数学试卷
一、选择题:(本大题共12个小题,每小题4分,共48分)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请使用2B铅笔将答题卡上对应题目右侧正确答案所在的方框涂黑
1.2021的相反数是( )
A.2021 B.﹣2021 C. D.﹣
2.下列图形是某几届冬奥会图标,其中是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
3.下列命题中,是真命题的是( )
A.同旁内角互补
B.有两边及一角对应相等的两个三角形全等
C.矩形的对角线互相平分
D.多边形的内角和为360°
4.“二十四节气”是中国古代劳动人民长期经验积累的结晶,它包括立春、惊蛰、春分、立夏等,同时,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足10小时的节气是( )
A.惊蛰 B.立夏 C.大雪 D.寒露
5.如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在⊙O上,连接AC,BC.若∠P=45°,则∠ACB的度数为( )
A.15° B.22.5° C.30° D.37.5°
6.下列计算中,正确的是( )
A. B. C. D.
7.估计的值应在( )
A.0到1之间 B.1到2之间 C.2到3之间 D.3到4之间
8.如图,△ABC与△DEF是位似图形,点O是位似中心,且△ABC的面积为4.若OA:OD=1:3,则△DEF的面积为( )
A.8 B.12 C.20 D.36
9.把四边形和三角形按如图所示的规律拼图案,其中图案①中共有4个三角形,图案②中共有7个三角形,图案③中共有10个三角形,…,若按此规律拼图案,则图案⑧中共有( )
A.13个三角形 B.19个三角形 C.25个三角形 D.31个三角形
10.如图,某同学在山坡坡脚A处时,测得一座楼房的楼顶B处的仰角为60°,沿山坡往上走到C处时,测得这座楼房的楼顶B处的仰角为45°.已知AC=20m,且AO⊥BO,点O、A、C、B在同一平面内,若此山坡的坡度为1:2,则这座楼房的高BO的值是( )
A.(90+30)m B.(90﹣30)m C.(30﹣30)m D.(30+30)m
11.从﹣3,﹣2,﹣1,0,1,2这六个数中,随机取出一个数,记为m,若m使关于x的函数y=(m﹣1)x2+mx+1的图象与x轴有交点,且使关于x的不等式组有解,则所有满足条件的m的绝对值的和是( )
A.7 B.5 C.﹣1 D.﹣5
12.如图,BC⊥x轴,垂足为C,BA⊥y轴,垂足为A,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC与点E,且BE=2CE.若四边形ODBE的面积为24,则k的值为( )
A.4 B.6 C.8 D.12
二、填空题:(本大题共6个小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卡中对应题目的横线上。
13.计算:2﹣2+π0+(﹣)2= .
14.据统计,我国累计接种新冠疫苗超过230000000剂次.其中的数据230000000用科学记数法表示为 .
15.现将背面完全相同,正面分别标有数字0,1,2,5的4张卡片洗匀后,背面朝上,从中任取一张,将该卡片正面上的数字记为m,再从剩下的3张卡片中任取一张,将该卡片正面上的数字记为n,则数字m,n之和为奇数的概率为 .
16.如图,在△ABC中,∠ABC=120°,AB=BC=6.以点A为圆心,AC长为半径画弧,与AB的延长线交于点D,则图中阴影部分面积为 .
17.如图,点E、F分别在矩形ABCD的边BC、CD上,DE与AF相交于点N.已知DF=6,AN=5.若将矩形ABCD沿AF折叠后,点D恰好与点E重合,则△ABE的面积为 .
18.某公司对A村、B村、C村进行了合作办企的投资,其投资总额是对C村投资额的倍.随着国家对乡村振兴的高度重视,该公司调整了投资计划,在原投资总额的基础上再增加一部分投资,并按3:3:8的比例分别对A村、B村、C村增加投资.该公司调整投资计划后,若该公司对A村的投资总额与该公司对三个村的投资总额的和的比为6:13,且该公司对B村增加的投资额是该公司对三个村的投资总额的和的,则该公司对B村的投资总额与该公司对C村的投资总额的比为 .#MUST6
三、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上
19.计算:
(1)(3x﹣y)2﹣x(x+2y);
(2).
20.如图,在平行四边形ABCD中,CF平分∠BCD交B于点F.
(1)尺规作图:过点A作AE平分∠BAD交BD于点E;
注意:不写作法,保留作图痕迹,并标明字母.
(2)求证:AE=CF.
21.在开展“童心向党”系列活动中,某校举办了一场“党史知识你我知”的知识竞赛,现分别从八年级、九年级各随机抽取了20名学生的成绩(单位:分,满分:100分),相关数据(成绩)整理统计如下:
收集数据:
八年级:92,98,96,93,96,92,60,92,78,92,86,84,81,84,78,92,74,100,64,92.
九年级:93,88,89,96,72,75,95,90,86,95,95,96,100,94,93,68,86,80,78,91.
整理数据:
| 60≤x<70 | 70x<80 | 80≤x<90 | 90≤x≤100 |
八年级 | 2 | 3 | 4 | 11 |
九年级 | 1 | 3 | 5 | 11 |
分析数据:
| 平均数 | 中位数 | 众数 |
八年级 | 86.2 | a | 92 |
8九年级 | 88 | 92 | b |
根据以上信息回答下列问题:
(1)请直接写出表中的a,b的值;
(2)已知该校八、九年级各有学生760人,若规定知识竞赛成绩在80分及其以上为优秀,请估计该校知识竞赛成绩为优秀的学生人数;
(3)根据表中的统计量,你认为哪个年级的知识竞赛成绩的总体水平更好,请说明理由.
22.在学习数学的过程中,我们发现了一种很有趣的自然数﹣﹣“登高数”.
定义:设一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,且a<b<c<d,abcd≠0,若bc的值能被a+d的值整除,则称这个正整数为“登高数”.
例如:1345是“登高数”,因为1,3,4,5都不为0,1<3<4<5,且1+5=6,3×4=12,且12能被6整除,所以1345是“登高数”;2457不是“登高数”,因为2,4,5,7都不为0,2<4<5<7,且2+7=9,4×5=20,但20不能被9整除,所以2457不是“登高数”
(1)判断3567,2589是否是“登高数”,并说明理由;
(2)在四位正整数中,求出百位上的数字比个位上的数字小5的所有“登高数”.
23.在学习函数的过程中,我们经历了通过列表,描点,连线来画函数图象,观察分析图象特征,从而概括出函数的性质的过程.下面是研究函数y=性质及其应用的部分过程.请按要求完成下列各小题.
列表:
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | 0 | 2 | 3 | … | |||
y | … | 4 | a | 0 | 1 | ﹣ | ﹣ | 2 | 1 | b | … |
(1)请求出表中a,b的值,并在图中补全该函数的图象;
(2)根据函数图象,写出该函数的一条性质;
(3)已知函数y=2x﹣3的图象如图所示,结合你所画的函数图象,请直接写出不等式y<2x﹣3的解集.
24.一时蔬小店某一天用150元购进了30斤平菇和20斤莴笋.销售时,每斤平菇的平均售价比每斤莴笋的平均售价的2倍少1元,该小店销售完所进的平菇和莴笋后获利60元.
(1)这一天,该小店销售莴笋的平均售价是每斤多少元?
(2)接着第二天,该小店又用150元购进了30斤平菇和20斤莴笋,其中,平菇和莴笋的进价与第一天的进价相同,销售时受到一些因素的影响,每斤莴笋的平均售价比第一天的平均售价增加了a%(a>0),但莴笋的销售量与第一天的销售量相同:每斤平菇的平均售价比第一天的平均售价增加了a%,但平菇的销售量比第一天的销售量下降了a%,最终第二天的总销售额与第一天的总销售额相等,求a的值.
25.如图,已知抛物线y=ax2+bx+5经过三点A(﹣1,0)、B(﹣5,0)、C(0,c).
(1)求a,b,c的值;
(2)若点P是直线BC下方抛物线上的一点连接PB、PC,求△PBC面积的最大值;
(3)将原抛物线y=ax2+bx+5向右平移4个单位长度,得到新抛物线y=a1x2+b1x+c1,点Q是x轴上方新抛物线上一点,当△PBC的面积取最大值时,在x轴上是否存在点N,使得以点A、N、P、Q为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标,若不存在,请说明理由.
四、解答题:(本大题共1个小题,共8分)解答时每小题必须给出必要的演算过程或推理.步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上。
26.如图①,在矩形ABCD中,∠ACB=60°,矩形A1B1CD1是由矩形ABCD绕点C顺时针旋转一个角度得到的,点A1、B1、D1分别是点A、B、D的对应点.在旋转过程中,直线BB1与直线AA1相交于点M.
(1)当∠BCB1=100°时,求∠A1B1M的度数;
(2)在旋转过程中,请你猜想AM与A1M之间存在的数量关系,并根据所给图形证明你猜想的结论;
(3)如图②,设点N在边AB上,且∠BCN=30°,BC=1,在旋转过程中,当NC+NB1的值取最小值时,请直接写出点B1与点M之间的距离.
2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年重庆市巴南区中考春招数学试卷(含答案): 这是一份2023年重庆市巴南区中考春招数学试卷(含答案),共28页。试卷主要包含了0分, 估算2 7+3的值在等内容,欢迎下载使用。