2021年陕西省学林大联考中考模拟数学试卷(4月份)
展开2021年陕西省学林大联考中考数学模拟试卷(4月份)
一.选择题(满分30分,每小题3分)
1.﹣4的倒数是( )
A. B.﹣ C.4 D.﹣4
2.下列把2034000记成科学记数法正确的是( )
A.2.034×106 B.20.34×105 C.0.2034×106 D.2.034×103
3.如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是( )
A.120° B.100° C.150° D.160°
4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是( )
A. B.
C. D.
5.计算(﹣)2018×(1.5)2019的结果是( )
A.﹣ B. C. D.﹣
6.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AE+DE=3cm,那么AC等于( )
A.2cm B.3cm C.4cm D.5cm
7.一次函数y=kx+b,经过(1,1),(2,﹣4),则k与b的值为( )
A. B. C. D.
8.如图的矩形ABCD中,E点在CD上,且AE<AC.若P、Q两点分别在AD、AE上,AP:PD=4:1,AQ:QE=4:1,直线PQ交AC于R点,且Q、R两点到CD的距离分别为q、r,则下列关系何者正确?( )
A.q<r,QE=RC B.q<r,QE<RC C.q=r,QE=RC D.q=r,QE<RC
9.如图,在⊙O中,,∠AOB=40°,则∠BDC的度数是( )
A.10° B.20° C.30° D.40°
10.将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为( )
A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+2
二.填空题(满分12分,每小题3分)
11.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为 .
12.一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为 .
13.如图,在平面直角坐标系中,A(1,0),B(0,﹣2),将线段AB平移得到线段CD,当=时,点C、D同时落在反比例函数y=(k<0)的图象上,则k的值为 .
14.如图,在菱形ABCD中,∠DAB=60°,AC=12,P是菱形的对角线AC上的一个动点,M,N分别是菱形ABCD的边AB,BC的中点,则PM+PN的最小值为 .
三.解答题(共11小题,满分78分)
15.(5分)计算:.
16.(5分)解方程﹣2.
17.(5分)如图,已知⊙O和点P(点P在⊙O内部),请用直尺和圆规作⊙O的一条弦AB,使得弦AB经过点P且最短(要求不写作法,保留作图痕迹).
18.(5分)如图,点P为平行四边形ABCD内一点,连接PB,PC,PD,PB=AB,∠ABP=∠ADP=90°
(1)求∠BCP的度数;
(2)若PC=PD,求证:BP垂直平分线段CD.
19.(7分)新年将至,我市积极开展对桥梁结构设计的安全性进行评估(已知:抗倾覆系数越高,安全性越强;当抗倾覆系数≥2.5时,认为该结构安全),现在重庆市随机抽取了甲、乙两个设计院,对其各自在建的或已建的20座桥梁项目进行排查,将得到的抗倾覆数据进行整理、描述和分析(抗倾覆数据用x表示,共分成6组:A.0≤x<2.5,B.2.55≤x<5.0,C.5.0≤x<7.5,D.7.5≤x<10.0,E.10.0≤x<12.5,F.12.5≤x<15),下面给出
了部分信息;
甲、乙设计院分别被抽取的20座桥梁抗倾覆系数统计表
设计院 | 甲 | 乙 |
平均数 | 7.7 | 8.9 |
众数 | a | 8 |
中位数 | 7 | b |
方差 | 19.7 | 18.3 |
其中,甲设计院C组的抗倾覆系数是:7,7,7,6,7,7;
乙设计院D组的抗倾覆系数是:8,8,9,8,8,8;
根据以上信息解答下列问题:
(1)扇形统计图中D组数据所对应的圆心角是 度,a= ,b= ;
(2)根据以上数据,甲、乙两个设计院中哪个设计院的桥梁安全性更高,说明理由;
(3)据统计,2018年至2019年,甲设计院完成设计80座桥梁,乙设计院完成设计120座桥梁,请估算2018年至2019年两设计院的不安全桥梁的总数.
20.(7分)在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的一、二号楼进行测高实践.如图为实践时绘制的截面图,无人机从地面CD的中点B垂直起飞到达点A处,测得一号楼顶部E的俯角为55°,测得二号楼顶部F的俯角为37°,此时航拍无人机的高度为60米,已知一号楼的高CE为20米,求二号楼的高DF.(结果精确到1米)(参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
21.(7分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:
(1)轿车到达乙地时,求货车与甲地的距离;
(2)求线段CD对应的函数表达式;
(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.
22.(7分)有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上放在桌面上,小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?
23.(8分)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作直线l交CA的延长线于点P,且∠ADP=∠BCD,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.
(1)求证:DP∥AB;
(2)求证:PD是⊙O的切线;
(3)若AC=6,BC=8,求线段PD的长.
24.(10分)如图,若一次函数y=﹣3x﹣3的图象与x轴、y轴分别交于A、C两点,点B的坐标为(3,0),二次函数y=ax2+bx﹣3的图象过A、B、C三点.
(1)求二次函数的表达式;
(2)如图1,若点P在直线BC下方的抛物线上运动,过P点作PF⊥BC,交线段BC于点F,在点P运动过程中,线段PF是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
(3)点P在y轴右侧的抛物线上运动,过P点作x轴的垂线,与直线BC交于点D,若∠PCD+∠ACO=45°,请在备用图上画出示意图,并直接写出点P的坐标.
25.(12分)某数学学习小组在复习线段垂直平分线性质时,提出了以下几个问题,请你帮他们解决:
【数学理解】
(1)点P是线段AB垂直平分线上的一点,则PA:PB的值为 .
【拓展延伸】
(2)在平面直角坐标系xOy中,点C(6,0),点Q在x轴上,且QO:QC=2:1,则点Q的坐标为 .
(3)经小组探究发现,如图1,延长线段DE到点F,使EF=DE,以点F为圆心,2EF长为半径作圆,则对于⊙F上任一点T,都有TD=2TE,请你证明这个结论.
【问题解决】
(4)如图2,某人乘船以25千米/时的速度沿一笔直的河l从码头G到码头M,再立即坐车沿一笔直公路以75千米/时的速度回到住处H,已知乘船和坐车所用的时间相等,请在河l边上确定码头M的位置.(请画出示意图并简要说明理由)
2022年陕西省学林大联考中考数学全真模拟试卷(b卷)(学生版+解析版): 这是一份2022年陕西省学林大联考中考数学全真模拟试卷(b卷)(学生版+解析版),共27页。
2022年陕西省学林大联考中考数学全真模拟试卷(B卷): 这是一份2022年陕西省学林大联考中考数学全真模拟试卷(B卷),共27页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年陕西省学林大联考中考数学自查试卷(学生版+解析版): 这是一份2022年陕西省学林大联考中考数学自查试卷(学生版+解析版),共22页。