搜索
    上传资料 赚现金
    提分专练(05) 以矩形、菱形、正方形为背景的
    立即下载
    加入资料篮
    提分专练(05) 以矩形、菱形、正方形为背景的01
    提分专练(05) 以矩形、菱形、正方形为背景的02
    提分专练(05) 以矩形、菱形、正方形为背景的03
    还剩10页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    提分专练(05) 以矩形、菱形、正方形为背景的

    展开
    这是一份提分专练(05) 以矩形、菱形、正方形为背景的,共13页。

    |类型1| 以矩形为背景的问题
    1.[2018·连云港] 如图T5-1,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
    (1)求证:四边形ACDF是平行四边形;
    (2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
    图T5-1
    2.[2018·通辽] 如图T5-2,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
    (1)求证:△AEF≌△DEB;
    (2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
    图T5-2
    3.[2019·鄂州] 如图T5-3,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形DEBF是平行四边形;
    (2)当DE=DF时,求EF的长.
    图T5-3
    |类型2| 以菱形为背景的问题
    4.[2017·北京] 如图T5-4,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.
    (1)求证:四边形BCDE为菱形;
    (2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
    图T5-4
    5.[2019·宁波] 如图T5-5,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
    (1)求证:BG=DE;
    (2)若E为AD中点,FH=2,求菱形ABCD的周长.
    图T5-5
    |类型3| 以正方形为背景的问题
    6.[2018·盐城] 在正方形ABCD中,对角线BD所在的直线上有两点E,F,满足BE=DF,连接AE,AF,CE,CF,如图T5-6所示.
    (1)求证:△ABE≌△ADF;
    (2)试判断四边形AECF的形状,并说明理由.
    图T5-6
    7.[2018·遵义] 如图T5-7,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE(1)求证:OM=ON;
    (2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
    图T5-7
    8.[2019·临沂] 如图T5-8,在正方形ABCD中,E是DC边上一点(与D,C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于点G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角的平分线),并说明理由.
    图T5-8
    【参考答案】
    1.解:(1)证明:∵四边形ABCD是矩形,
    ∴AB∥CD,∴∠FAE=∠CDE,
    ∵E是AD的中点,∴AE=DE,
    又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形.
    (2)BC=2CD.理由:
    ∵CF平分∠BCD,∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,∴AD=2CD,
    ∵AD=BC,∴BC=2CD.
    2.解:(1)证明:∵E是AD的中点,∴AE=DE,
    又∵AF∥BC,
    ∴∠AFE=∠DBE,∠EAF=∠EDB,
    ∴△AEF≌△DEB.
    (2)四边形ADCF是矩形.
    证明:∵AF∥CD,AF=CD,
    ∴四边形ADCF是平行四边形.
    ∵△AEF≌△DEB,∴AF=BD,
    ∴BD=CD,即AD是△ABC的中线,
    又∵AB=AC,∴AD⊥BC,
    ∴∠ADC=90°.
    ∴四边形ADCF是矩形.
    3.解:(1)证明:∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠DFO=∠BEO.
    又∵∠DOF=∠BOE,OD=OB,
    ∴△DOF≌△BOE(AAS),
    ∴DF=BE,
    又∵DF∥BE,
    ∴四边形DEBF是平行四边形.
    (2)∵DE=DF,四边形BEDF是平行四边形,
    ∴四边形BEDF是菱形,
    ∴DE=BE,EF⊥BD,OE=OF,
    设AE=x,则DE=BE=8-x,
    在Rt△ADE中,根据勾股定理,
    得AE2+AD2=DE2,
    ∴x2+62=(8-x)2,
    解得:x=74,
    ∴DE=8-74=254.
    在Rt△ABD中,根据勾股定理,
    得AB2+AD2=BD2,
    ∴BD=62+82=10,
    ∴OD=12BD=5,
    在Rt△DOE中,根据勾股定理,得
    DE2-OD2=OE2,
    ∴OE=(254) 2-52=154,
    ∴EF=2OE=152.
    4.解:(1)证明:∵E为AD的中点,AD=2BC,
    ∴BC=ED,
    ∵AD∥BC,∴四边形BCDE是平行四边形,
    ∵∠ABD=90°,AE=DE,
    ∴BE=ED,∴四边形BCDE是菱形.
    (2)∵AD∥BC,AC平分∠BAD,
    ∴∠BAC=∠DAC=∠BCA,
    ∴BA=BC=1,
    ∵AD=2BC=2,∴sin∠ADB=12,
    ∴∠ADB=30°,∴∠DAC=12∠BAD=30°,∠ADC=2∠ADB=60°.
    ∴∠ACD=90°.
    在Rt△ACD中,AD=2,CD=1,∴AC=3.
    5.解:(1)证明:在矩形EFGH中,EH=FG,EH∥FG,∴∠GFH=∠EHF.
    ∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE,
    在菱形ABCD中,AD∥BC,
    ∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),
    ∴BG=DE.
    (2)连接EG,
    在菱形ABCD中,AD∥BC,AD=BC,
    ∵E为AD中点,
    ∴AE=ED,
    ∵BG=DE,∴AE=BG,
    又∵AE∥BG,
    ∴四边形ABGE是平行四边形,
    ∴AB=EG,
    在矩形EFGH中,EG=FH=2,
    ∴AB=2,
    ∴菱形ABCD的周长为8.
    6.解:(1)证明:∵四边形ABCD是正方形,
    ∴∠ABD=45°,∠ADB=45°,AB=AD.
    ∴∠ABE=∠ADF=135°.
    又∵BE=DF,∴△ABE≌△ADF(SAS).
    (2)四边形AECF是菱形.
    理由:连接AC交BD于点O,图略.
    则AC⊥BD,OA=OC,OB=OD.
    又∵BE=DF,∴OE=OF,
    ∴四边形AECF是菱形.
    7.解:(1)证明:正方形ABCD中,AC=BD,OA=12AC,OB=OD=12BD,∴OA=OB=OD,
    ∵AC⊥BD,∴∠AOB=∠AOD=90°,
    ∴∠OAD=∠OBA=45°,∴∠OAM=∠OBN,
    又∵∠EOF=90°,∴∠AOM=∠BON,
    ∴△AOM≌△BON,∴OM=ON.
    (2)如图,过点O作OP⊥AB于P,
    ∴∠OPA=90°,∠OPA=∠MAE,
    ∵E为OM中点,∴OE=ME,
    又∵∠AEM=∠PEO,∴△AEM≌△PEO,
    ∴AE=EP,
    ∵OA=OB,OP⊥AB,∴AP=BP=12AB=2,
    ∴EP=1.
    Rt△OPB中,∠OBP=45°,∴OP=PB=2,
    Rt△OEP中,OE=OP2+PE2=5,
    ∴OM=2OE=25,
    Rt△OMN中,OM=ON,∴MN=2OM=210.
    8.[解析]过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCM的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.
    解:过点H作HN⊥BM于N,
    则∠HNC=90°,
    ∵四边形ABCD为正方形,
    ∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°.
    ①∵将△ADE沿AE所在的直线折叠得到△AFE,
    ∴△ADE≌△AFE,
    ∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE,∴AF=AB.
    又∵AG=AG,
    ∴Rt△ABG≌Rt△AFG(HL),
    ∴∠BAG=∠FAG,∠AGB=∠AGF,
    ∴AG是∠BAF的平分线,GA是∠BGF的平分线.
    ②由①知,∠DAE=∠FAE,∠BAG=∠FAG,
    又∵∠BAD=90°,
    ∴∠GAF+∠EAF=12×90°=45°,即∠GAH=45°.
    ∵GH⊥AG,
    ∴∠GHA=90°-∠GAH=45°,
    ∴△AGH为等腰直角三角形,∴AG=GH.
    ∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,
    ∴∠BAG=∠NGH.
    又∵∠B=∠HNG=90°,AG=GH,
    ∴△ABG≌△GNH(AAS),
    ∴BG=NH,AB=GN,∴BC=GN.
    ∴BC-CG=GN-CG,
    ∴BG=CN,∴CN=HN.
    ∵∠HNC=90°,
    ∴∠NCH=∠NHC=12×90°=45°,
    ∴∠DCH=∠DCM-∠NCH=45°,
    ∴∠DCH=∠NCH,
    ∴CH是∠DCM的平分线.
    ③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,
    由①知,∠AGB=∠AGF,
    ∴∠HGN=∠EGH,
    ∴GH是∠EGM的平分线.
    综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCM的平分线,GH是∠EGM的平分线.
    相关试卷

    2022年中考数学真题考点分类专练专题18矩形菱形正方形(含解析): 这是一份2022年中考数学真题考点分类专练专题18矩形菱形正方形(含解析),共57页。

    提分专练06 以矩形、菱形、正方形为背景: 这是一份提分专练06 以矩形、菱形、正方形为背景,共10页。试卷主要包含了已知等内容,欢迎下载使用。

    提分专练08 以圆为背景的综合计算与证明: 这是一份提分专练08 以圆为背景的综合计算与证明,共14页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        提分专练(05) 以矩形、菱形、正方形为背景的
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map