还剩2页未读,
继续阅读
成套系列资料,整套一键下载
- 2021年中考数学 模拟试卷一( 含答案 ) 试卷 2 次下载
- 2021年中考数学 模拟试卷五( 学生版 ) 试卷 0 次下载
- 2021年中考数学 模拟试卷三( 含答案 ) 试卷 1 次下载
- 2021年中考数学 模拟试卷四( 学生版 ) 试卷 0 次下载
- 2021年中考数学 模拟试卷四( 含答案 ) 试卷 1 次下载
2021年中考数学模拟试卷一
展开
这是一份2021年中考数学模拟试卷一,共3页。
2019的倒数的相反数是( )
A.﹣2019 B.﹣ C. D.2019
下列图形中,轴对称图形的个数是( )
A.1 B.2 C.3 D.4
如图所示,正三棱柱的左视图( )
不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.3个球都是黑球 B.3个球都是白球
C.三个球中有黑球 D.3个球中有白球
如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )
A.135° B.125° C.115° D.105°
已知代数式x﹣2y的值是5,则代数式﹣3x+6y+1的值是( )
A.16 B.﹣14 C.14 D.﹣16
如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A、B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x﹣2上,则a的值为( )
A.1 B.2 C.﹣1 D.﹣1.5
一个正多边形的每个内角都等于140°,那么它是正( )边形
A.正六边形 B.正七边形 C.正八边形 D.正九边形
如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,
则∠CDB=( )
A.54° B.64° C.27° D.37°
下列运算一定正确的是( )
A.2a+2a=2a2 B.a2•a3=a6
C.(2a2)3=6a6 D.(a+b)(a﹣b)=a2﹣b2
如果分式在实数范围内有意义,则x的取值范围是( )
A.x≠﹣1 B.x>﹣1 C.全体实数 D.x=﹣1
如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线y=-6x-1于点C,则△ADC的面积为( )
A.9 B.10 C.12 D.15
、填空题
如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是 .
某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是 .(填“平均数”“众数”或“中位数”)
当的值为最小值时,a的取值为 .
一个三角形等腰三角形的两边长分别为13和7,则周长为 .
如图所示,在直角坐标系中,△A′B′C′是由△ABC绕点P旋转一定的角度而得,其中A(1,4),B(0,2),C(3,0),则旋转中心点P的坐标是 .
在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是 .
、解答题
计算:;
如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:
(1)本次随机调查了多少名学生?
(2)补全条形统计图中“书画”、“戏曲”的空缺部分;
(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;
(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)
某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.
(1)该水果店两次分别购买了多少元的水果?
(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?
如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:
(1)AE⊥BF;
(2)四边形BEGF是平行四边形.
如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线y=的图象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x轴的正半轴上,F在AB上,且BD=OC,BF=OB.双曲线交DE于M点,交EF于N点,求△MEN的面积
、综合题
如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F
(1)求∠EDF的度数;
(2)若AD=6,求△AEF的周长;
(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
综合与探究
如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 .
(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;
(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
2019的倒数的相反数是( )
A.﹣2019 B.﹣ C. D.2019
下列图形中,轴对称图形的个数是( )
A.1 B.2 C.3 D.4
如图所示,正三棱柱的左视图( )
不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.3个球都是黑球 B.3个球都是白球
C.三个球中有黑球 D.3个球中有白球
如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )
A.135° B.125° C.115° D.105°
已知代数式x﹣2y的值是5,则代数式﹣3x+6y+1的值是( )
A.16 B.﹣14 C.14 D.﹣16
如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A、B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x﹣2上,则a的值为( )
A.1 B.2 C.﹣1 D.﹣1.5
一个正多边形的每个内角都等于140°,那么它是正( )边形
A.正六边形 B.正七边形 C.正八边形 D.正九边形
如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,
则∠CDB=( )
A.54° B.64° C.27° D.37°
下列运算一定正确的是( )
A.2a+2a=2a2 B.a2•a3=a6
C.(2a2)3=6a6 D.(a+b)(a﹣b)=a2﹣b2
如果分式在实数范围内有意义,则x的取值范围是( )
A.x≠﹣1 B.x>﹣1 C.全体实数 D.x=﹣1
如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线y=-6x-1于点C,则△ADC的面积为( )
A.9 B.10 C.12 D.15
、填空题
如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是 .
某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是 .(填“平均数”“众数”或“中位数”)
当的值为最小值时,a的取值为 .
一个三角形等腰三角形的两边长分别为13和7,则周长为 .
如图所示,在直角坐标系中,△A′B′C′是由△ABC绕点P旋转一定的角度而得,其中A(1,4),B(0,2),C(3,0),则旋转中心点P的坐标是 .
在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是 .
、解答题
计算:;
如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:
(1)本次随机调查了多少名学生?
(2)补全条形统计图中“书画”、“戏曲”的空缺部分;
(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;
(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)
某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.
(1)该水果店两次分别购买了多少元的水果?
(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?
如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:
(1)AE⊥BF;
(2)四边形BEGF是平行四边形.
如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线y=的图象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x轴的正半轴上,F在AB上,且BD=OC,BF=OB.双曲线交DE于M点,交EF于N点,求△MEN的面积
、综合题
如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F
(1)求∠EDF的度数;
(2)若AD=6,求△AEF的周长;
(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
综合与探究
如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 .
(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;
(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.