2021年高考艺术生数学基础复习 考点46 三定问题(定点、定值、定直线)(学生版)
展开考点46 三定问题(定点、定值、定直线)
一.求定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关.
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
二.直线定点问题的求解的基本思路如下:
①假设直线方程,与椭圆方程联立,整理为关于或的一元二次方程的形式;
②利用求得变量的取值范围,得到韦达定理的形式;
③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;
④根据直线过定点的求解方法可求得结果.
三.解答圆锥曲线的定点、定值问题的策略:
1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量);②利用条件找到过定点的曲线之间的关系,得到关于与的等式,再研究变化量与参数何时没有关系,得出定点的坐标;
2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.
考向一 定值
【例1】(2021·北京丰台区·高三一模)已知椭圆长轴的两个端点分别为,离心率为.
(1)求椭圆的方程;
(2)为椭圆上异于的动点,直线分别交直线于两点,连接并延长交椭圆于点.
(ⅰ)求证:直线的斜率之积为定值;
(ⅱ)判断三点是否共线,并说明理由.
【举一反三】
1.(2021·陕西宝鸡市·高三二模(文))已知椭圆:()的左、右焦点分别为,,离心率为,点是椭圆上一点,的周长为.
(1)求椭圆的方程;
(2)直线:与椭圆交于,两点,且四边形为平行四边形,求证:的面积为定值.
2.(2021·四川遂宁市·高三二模(文))如图,已知椭圆:的左焦点为,直线与椭圆交于,两点,且时,.
(1)求的值;
(2)设线段,的延长线分别交椭圆于,两点,当变化时,直线与直线的斜率之比是否为定值?若是定值,求出定值;若不是定值,请说明理由.
考向二 定点
【例2】(2021·河南月考(文))已知椭圆的两焦点为,,点在椭圆上,且的面积最大值为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点为椭圆的右顶点,若不平行于坐标轴的直线与椭圆相交于两点(均不是椭圆的右顶点),且满足,求证:直线过定点,并求出该定点的坐标.
【举一反三】
1.(2021·黑龙江大庆市·高三一模(理))已知焦点在轴上的椭圆:,短轴长为,椭圆左顶点到左焦点的距离为.
(1)求椭圆的标准方程;
(2)如图,已知点,点是椭圆的右顶点,直线与椭圆交于不同的两点 ,两点都在轴上方,且.证明直线过定点,并求出该定点坐标.
2.(2021·全国高三月考(文))已知斜率为的的直线与椭圆交于点,线段中点为,直线在轴上的截距为椭圆的长轴长的倍.
(1)求椭圆的方程;
(2)若点都在椭圆上,且都经过椭圆的右焦点,设直线的斜率分别为,,线段的中点分别为,判断直线是否过定点,若过定点.求出该定点,若不过定点,说明理由.
考向三 定直线
【例3】(2021·深圳实验学校高中部)如图,已知抛物线直线交抛物线C于A,B两点,O为坐标原点.
(1)证明:;
(2)设抛物线C在点A处的切线为,在点B处的切线为,证明:与的交点M在一定直线上.
【举一反三】
1.(2021·浙江温州市)已知抛物线的焦点到准线的距离为2,直线交抛物线于,两点.
(1)求抛物线的标准方程;
(2)过点,分别作抛物线的切线,,点为直线,的交点.
(i)求证:点在一条定直线上;
(ii)求面积的取值范围.
2.(2021·云南昆明市·昆明一中高三月考(理))已知点P是抛物线上的动点,且位于第一象限.圆,点P处的切线l与圆O交于不同两点A,B,线段的中点为D,直线与过点P且垂直于x轴的直线交于点M.
(1)求证:点M在定直线上;
(2)设点F为抛物线C的焦点,切线l与y轴交于点N,求与面积比的取值范围.
1.(2021·江苏常州市·高三一模)已知O为坐标系原点,椭圆的右焦点为点F,右准线为直线n.
(1)过点的直线交椭圆C于两个不同点,且以线段为直径的圆经过原点O,求该直线的方程;
(2)已知直线l上有且只有一个点到F的距离与到直线n的距离之比为.直线l与直线n交于点N,过F作x轴的垂线,交直线l于点M.求证:为定值.
2(2021·山西临汾市·高三一模(理))已知椭圆与双曲线有两个相同的顶点,且的焦点到其渐近线的距离恰好为的短半轴的长度.
(1)求椭圆的标准方程;
(2)过点作不垂直于坐标轴的直线与交于,两点,在轴上是否存在点,使得平分?若存在,求点的坐标;若不存在,请说明理由.
3.(2021·漠河市高级中学高三月考(理))已知椭圆的一个顶点恰好是抛物线的焦点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆的标准方程;
(2)若过椭圆的右焦点作与坐标轴不垂直的直线交椭圆于两点,设点关于轴的对称点为,当直线绕着点转动时,试探究:是否存在定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.
4.(2021·山东烟台市·高三一模)已知分别是椭圆的左、右焦点, 为椭圆的上顶点,是面积为的直角三角形.
(1)求椭圆的方程;
(2)设圆上任意一点处的切线交椭圆于点,问:是否为定值?若是,求出此定值;若不是,说明理由.
6.(2021·四川遂宁市·高三二模(理))如图,已知椭圆:的左焦点为,直线与椭圆交于,两点,且时,.
(1)求的值;
(2)设线段,的延长线分别交椭圆于,两点,当变化时,直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
7.(2021·广东汕头市·高三一模)在平面直角坐标系中,为坐标原点,,已知平行四边形两条对角线的长度之和等于.
(1)求动点的轨迹方程;
(2过作互相垂直的两条直线、,与动点的轨迹交于、,与动点的轨迹交于点、,、的中点分别为、;
①证明:直线恒过定点,并求出定点坐标.
②求四边形面积的最小值.
8.(2021·河南平顶山市·高三二模(理))已知椭圆的离心率,过右焦点的直线与椭圆交于,两点,在第一象限,且.
(1)求椭圆的方程;
(2)在轴上是否存在点,满足对于过点的任一直线与椭圆的两个交点,,都有为定值?若存在,求出点的坐标;若不存在,说明理由.
9.(2021·北京平谷区·高三一模)已知椭圆的离心率为,并且经过点.
(1)求椭圆的方程;
(2)设过点的直线与轴交于点,与椭圆的另一个交点为,点关于轴的对称点为,直线交轴于点,求证:为定值.
10.(2021·河南新乡市·高三二模(理))已知椭圆的左、右顶点分别为,,为上不同于,的动点,直线,的斜率,满足,的最小值为-4.
(1)求的方程;
(2)为坐标原点,过的两条直线,满足,,且,分别交于,和,.试判断四边形的面积是否为定值?若是,求出该定值;若不是,说明理由.
2021年高考艺术生数学基础复习 考点03 集合(学生版): 这是一份2021年高考艺术生数学基础复习 考点03 集合(学生版),共8页。教案主要包含了子集的个数,集合间的关系,集合间运算等内容,欢迎下载使用。
2021年高考艺术生数学基础复习 考点39 利用导数求极值最值(学生版): 这是一份2021年高考艺术生数学基础复习 考点39 利用导数求极值最值(学生版),共10页。
2021年高考艺术生数学基础复习 考点47 直线与曲线的最值问题(教师版含解析): 这是一份2021年高考艺术生数学基础复习 考点47 直线与曲线的最值问题(教师版含解析),共26页。教案主要包含了最值问题,综合运用等内容,欢迎下载使用。