初中数学苏科版八年级下册9.3 平行四边形课时练习
展开苏科版八年级下册 第9章 《中心对称图形——平行四边形》
重难点题型训练(一)
1.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:
(1)△ABF与△AGF全等吗?说明理由;
(2)求∠EAF的度数;
(3)若AG=7,△AEF的面积是21,求△CEF的面积.
2.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.
(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;
(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?
3.已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是线段OB、OC上的动点
(1)如果动点E、F满足BE=OF(如图),且AE⊥BF时,问点E在什么位置?并证明你的结论;
(2)如果动点E、F满足BE=CF(如图),写出所有以点E或F为顶点的全等三角形(不得添加辅助线).
4.如图,正方形ABCD,点F在BC上,试在图中画出一条线段,构出另一个三角形,使得这个三角形全等于△DFC.
(1)你能在图中画出几种不同位置的线段得到这个三角形?试写出能够画出的种数共有 种.
(2)画出其中的1种位置的线段,并证明你构出的三角形全等于△DFC.
5.已知正方形ABCD中,AB=BC=CD=DA=16,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿射线BC方向运动,设点P的运动时间为t.连接PA.
(1)如图1,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD运动,求t为何值时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等;
(2)如图2,在(1)的基础上,当点Q到达点D以后,立即以原速沿线段DC向点C运动,当Q到达点C时,两点同时停止运动,求t为何值时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等.
6.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
7.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
8.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC于点E,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.
(1)求菱形ABCD的面积;
(2)求∠CHA的度数.
9.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F,
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
10.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.
11.如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.
(1)求证:OE=OF;
(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=BE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?回答并证明你的结论.
13.如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.
求证:
(1)四边形ABCD是菱形.
(2)BF=DE.
14.如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.
(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)
(2)证明:四边形AHBG是菱形;
(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)
15.如图:∠MON=90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1.
(1)连续D1D,求证:∠D1DA=90°;
(2)连接CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;
(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断.
参考答案
1.解:(1)结论:△ABF≌△AGF.
理由:在Rt△ABF与Rt△AGF中,
,
∴△ABF≌△AGF(HL)
(2)∵△ABF≌△AGF
∴∠BAF=∠GAF,
同理易得:△AGE≌△ADE,有∠GAE=∠DAE;
即∠EAF=∠EAD+∠FAG=∠BAD=45°,
故∠EAF=45°.
(3)∵S△AEF=×EF×AG,AG=4
∴21=×EF×AG,
∴EF=6,
∵BF=FG,EG=DE,AG=AB=BC=CD=7,设FC=x,EC=y,则BF=7﹣x,DE=7﹣y,
∵BF+DE=FG+EG=EF=6,
∴7﹣x+7﹣y=6,
∴x+y=8 ①
在Rt△EFC中,∵EF2=EC2+FC2,
∴x2+y2=62②
①2﹣②得到,2xy=28,
∴S△CEF=xy=7.
方法二:易知S△ABF=S△AGF,S△AED=S△AEG,
∴S△ABF+S△ADE=S△AEF=21,
∴S△EFC=S正方形ABCD﹣S五边形ABFED=49﹣42=7.
2.解:(1)全等.
理由:由题意:BP=CQ=2t
当t=2时,BP=CQ=4
∵AB=BC=10,AE=4
∴BE=CP=10﹣4=6
∵BP=CQ,∠B=∠C=90°,BE=CP
∴△BPE≌△CQP (SAS)
(2)∵P、Q运动速度不相等
∴BP≠CQ
∵∠B=∠C=90°
∴当BP=CP,CQ=BE时,△BPE≌△CPQ,
∴BP=CP=BC=5,CQ=BE=6
∴当t=5÷2=(秒)时,△BPE≌△CPQ,
此时点Q的运动速度为6÷=(cm/s)
3.解:(1)当AE⊥BF时,点E在BO中点.证明如下:
延长AE交BF于点M,如图所示:
∵∠BME=∠AOE,∠BEM=∠AEO,
∴△BEM∽△AEO,
∴,
∵∠MBE=∠OBF,∠BME=∠BOF,
∴△BEM∽△BFO,
∴,
∵AO=BO,
∴EO=OF,
∵BE=OF,
∴BE=EO,
故当AE⊥BF时,点E在BO中点.
(2)∵四边形ABCD是正方形,
∴AO=CO=BO=DO,AC⊥BD,AB=BC=AD=CD,∠ACB=∠ABD=∠ADE=∠BAC=45°
∵BE=CF,
∴OE=OF,AF=DE,
∵BE=CF,∠ABD=∠ACB,AB=BC
∴△ABE≌△BCF(SAS)
同理可得△AOE≌△BOF,△ADE≌△BAF;
∴以点E或F为顶点的全等三角形有△ABE≌△BCF,△AOE≌△BOF,△ADE≌△BAF;
4.解:(1)如图,共可以构造出8个满足条件的三角形;
故答案为:8.
(2)如图1,作AE=CF,则△DFC≌△DAE,
证明如下:∵四边形ABCD是正方形,
∴AD=CD,∠A=∠C=90°,
在△DFC和△DAE中,,
∴△DFC≌△DAE(SAS).
5.解:(1)由题意,得BP=t,AQ=4t,QD=16﹣4t,
∵△ABP≌△CDQ
∴BP=QD
∴t=16﹣4t
解得:t=,
∴当t=时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等;
(2)如图2,依题意有△ADQ≌△ABP或△BCQ≌△ABP
∴DQ=BP或CQ=BP
∵DQ=4t﹣16,CQ=32﹣4t
∴4t﹣16=t或32﹣4t=t
解得:t=或t=,
∴当t=或t=时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等.
6.证明:
(1)∵CE平分∠BCD、CF平分∠GCD,
∴∠BCE=∠DCE,∠DCF=∠GCF,
∵EF∥BC,
∴∠BCE=∠FEC,∠EFC=∠GCF,
∴∠DCE=∠FEC,∠EFC=∠DCF,
∴OE=OC,OF=OC,
∴OE=OF;
(2)∵点O为CD的中点,
∴OD=OC,
又OE=OF,
∴四边形DECF是平行四边形,
∵CE平分∠BCD、CF平分∠GCD,
∴∠DCE=∠BCD,∠DCF=∠DCG
∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,
即∠ECF=90°,
∴四边形DECF是矩形.
7.(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC==5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
8.解:(1)如图,连接AC,
∵E为BC的中点,AE⊥BC,
∴AB=AC,
又∵菱形的边AB=BC,
∴△ABC是等边三角形,
∴AE=AB=×4=2,
∴菱形ABCD的面积=BC•AE=4×2=8;
(2)在等边三角形ABC中,∵AE⊥BC,
∴∠CAE=∠BAC=×60°=30°,
同理∠CAF=30°,
∴∠EAF=∠CAE+∠CAF=30°+30°=60°,
∵AE∥CG,
∴∠CHA=180°﹣∠EAF=180°﹣60°=120°.
9.(1)证明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠E,
∴∠DCP=∠E,
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPE=∠EDF=90°;
(3)解:AP=CE;理由如下:
在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠AEP,
∴∠DCP=∠AEP
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,
∴△EPC是等边三角形,
∴PC=CE,
∴AP=CE.
10.(1)证明:在菱形ABCD中,OC=AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)解:在菱形ABCD中,∠ABC=60°,
∴AC=AB=4,
∴在矩形OCED中,
CE=OD===2.
在Rt△ACE中,
AE==2.
11.解:(1)∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
在△BOE和△AOF中,
∵,
∴△BOE≌△AOF.
∴OE=OF.
(2)OE=OF成立.
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
在△BOE和△AOF中,
∵,
∴△BOE≌△AOF.
∴OE=OF.
12.1)证法一:如图
∵EF垂直平分BC,∴BE=EC,BF=CF,
∵CF=BE,∴BE=EC=CF=BF,
∴四边形BECF是菱形;
证法二:如图
∵EF垂直平分BC,∴BD=DC,EF⊥BC
∵BE=CF,∴△BED≌△CFD,
∴DE=DF
∴四边形BECF是菱形;
(2)解法一:
当∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
解法二:
当∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,∴∠EBC=45°,
∵BE=EC,∴∠ECB=∠EBC=45°∴∠BEC=90°,
∴菱形BECF是正方形.
13.证明:(1)∵AD∥BC,AD=BC(已知),
∴四边形ABCD为平行四边形.
又邻边AD=DC,
∴四边形ABCD为菱形;(3分)
(2)证法一:如图:
记EF与AC交点为G,EF与AB的交点为M.
由(1)证得四边形ABCD为菱形,
所以对角线AC平分∠A,
即∠BAC=∠DAC.
又∵EF⊥AC,AG=AG,
∴△AGM≌△AGE,∴AM=AE.(6分)
又∵E为AD的中点,四边形ABCD为菱形,
∴AM=BM.∠MAE=∠MBF.
又∵∠BMF=∠AME,
∴△BMF≌△AME.
∴BF=AE.
∴BF=DE.(8分)
证法二:如图:连接BD
∵四边形ABCD为菱形
∴BD⊥AC
∵EF⊥AC
∴EF∥BD
∵BF∥DE
∴四边形BDEF是平行四边形
∴BF=DE(8分)
14.(1)解:△ABC≌△BAD.
证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,
∴△ABC≌△BAD(SAS).
(2)证明:∵AH∥GB,BH∥GA,
∴四边形AHBG是平行四边形.
∵△ABC≌△BAD,
∴∠ABD=∠BAC.
∴GA=GB.
∴平行四边形AHBG是菱形.
(3)解:需要添加的条件是AB=BC.
15.(1)证明:∵∠D1AD+∠B1AD=90°,∠OAB1+∠B1AD=90°,
∴∠B1AO=∠D1AD,
∵AD1=AB1,AO=AD,
∴△OAB1≌△DAD1,∴∠D1DA=∠O=90°;(D1,D,C在同一条直线上).
(2)解:猜想∠C1CN=45°.
证明:作C1H⊥ON于H.作C1G⊥CD1于G;
则有C1G=CH.
∵∠C1D1C+∠AD1D=90°,∠C1B1H+∠AB1O=90°
∴∠C1D1C=∠C1B1H,
∵C1D1=B1C1,∠D1C1E=∠C1HB1=90°,
∴△C1GD1≌△C1B1H,
∴C1G=C1H,
又∵CH=C1G,
∴直角三角形CHC1是个等腰直角三角形,
∴∠C1CN=45°.
(3)解:作图;
得∠ADD2=90°(∠ADD2=90°、∠C2CN=45°均可).
数学苏科版9.3 平行四边形达标测试: 这是一份数学苏科版9.3 平行四边形达标测试,共10页。试卷主要包含了如图等内容,欢迎下载使用。
初中数学苏科版八年级下册9.3 平行四边形课时训练: 这是一份初中数学苏科版八年级下册9.3 平行四边形课时训练,共20页。试卷主要包含了已知,四边形ABCD是正方形等内容,欢迎下载使用。
数学八年级下册9.3 平行四边形练习: 这是一份数学八年级下册9.3 平行四边形练习,共11页。