2018版高考一轮总复习数学(文)模拟演练 第10章 概率 10-2 word版含答案
展开(时间:40分钟)
1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )
A. B.
C. D.
答案 B
解析 因为从四张卡片中任取出两张的情况为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种.其中两张卡片上数字和为偶数的情况为(1,3),(2,4),共2种,所以两张卡片上的数字之和为偶数的概率为.
2.某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )
A. B.
C. D.
答案 A
解析 已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率是P==.
3.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( )
A. B.
C. D.
答案 B
解析 如图,在正六边形ABCDEF的6个顶点中随机选择4个顶点,共有ABCD,ABCE,ABCF,ABDE,ABDF,ABEF,ACDE,ACDF,ACEF,ADEF,BCDE,BCDF,BCEF,BDEF,CDEF 15种选法,其中构成的四边形是梯形的有ABEF,BCDE,ABCF,CDEF,ABCD,ADEF,共6种情况,故构成的四边形是梯形的概率P==.
4.为了纪念抗日战争胜利70周年,从甲、乙、丙、丁、戍5名候选民警中选2名作为阅兵安保人员,为阅兵提供安保服务,则甲、乙、丙中有2名被选中的概率为( )
A. B.
C. D.
答案 A
解析 从甲、乙、丙、丁、戍5人中选2人的所有情况为:甲乙、甲丙、甲丁、甲戍、乙丙、乙丁、乙戍、丙丁、丙戍、丁戍,共10种,其中有甲、乙、丙中2人的有甲乙、甲丙、乙丙3种,所以P=.
5.一个三位数的百位、十位、个位上的数字依次为a,b,c,当且仅当a>b,b<c时称为“凹数”(如213,312等).若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“凹数”的概率是( )
A. B.
C. D.
答案 C
解析 由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,423,432,共6个.所以共有6+6+6+6=24个三位数.当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.故这个三位数为“凹数”的概率P==.
6.从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于______.
答案
解析 设2名男生为A,B,3名女生为a,b,c,则从5名同学中任取2名的方法有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,而这2名同学刚好是一男一女的有(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共6种,故所求的概率P=1-=.
7.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为________.
答案
解析 设2名男生记为A1,A2,2名女生记为B1,B2,任意选择两人在星期六、星期日参加某公益活动,共有A1A2,A1B1,A1B2,A2B1,A2B2,B1B2,A2A1,B1A1,B2A1,B1A2,B2A2,B2B1 12种情况,而星期六安排一名男生、星期日安排一名女生共有A1B1,A1B2,A2B1,A2B2 4种情况,则发生的概率为P==.
8.某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线-=1的离心率e>的概率是________.
答案
解析 由e=>,得b>2a.当a=1时,b=3,4,5,6四种情况;当a=2时,b=5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a,b)共有36种结果.∴所求事件的概率P==.
9.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
解 用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.即S中的元素有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),因为S中元素的个数是4×4=16,
所以基本事件总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P(B)==.
事件C包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1),所以P(C)=.
因为>,
所以小亮获得水杯的概率大于获得饮料的概率.
10.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解 (1)由题意,(a,b,c)所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,
所以P(A)==,因此,“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P(B)=1-P()=1-=,因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.
(时间:20分钟)
11.如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为( )
A. B.
C. D.
答案 D
解析 只考虑A,B两个方格的填法,不考虑大小,所有填法有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.要使填入A方格的数字大于B方格的数字,则从1,2,3,4中选2个数字,大的放入A格,小的放入B格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A方格的数字大于B方格的数字的概率为=.
12.设m,n分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程x2+mx+n=0有实根的概率为( )
A. B.
C. D.
答案 C
解析 先后两次出现的点数中有5的情况有:(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11种.其中使方程x2+mx+n=0有实根的情况有:(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7种.故所求概率为.
13.现有7名数理化成绩优秀者,分别用A1,A2,A3,B1,B2,C1,C2表示,其中A1,A2,A3的数学成绩优秀,B1,B2的物理成绩优秀,C1,C2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A1和B1不全被选中的概率为________.
答案
解析 从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果为:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),共12个基本事件.
设“A1和B1不全被选中”为事件N,则其对立事件表示“A1和B1全被选中”,由于={(A1,B1,C1),(A1,B1,C2)},所以P()==,由对立事件的概率计算公式,得P(N)=1-P()=1-=.
14.现有8个质量和外形一样的球,其中A1,A2,A3为红球的编号,B1,B2,B3为黄球的编号,C1,C2为蓝球的编号.从三种颜色的球中分别选出一个球,放到一个盒子内.
(1)求红球A1被选中的概率;
(2)求黄球B1和蓝球C1不全被选中的概率.
解 (1)从三种不同颜色的球中分别选出一球,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,
B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)},共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用M表示“红球A1被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,因而P(M)==.
(2)用N表示“黄球B1和蓝球C1不全被选中”这一事件,则其对立事件表示“B1,C1全被选中”这一事件,由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件由3个基本事件组成,所以P()==,由对立事件的概率计算公式得P(N)=1-P()=1-=.
2018版高考一轮总复习数学(文)模拟演练 解答题专项训练4 word版含答案: 这是一份2018版高考一轮总复习数学(文)模拟演练 解答题专项训练4 word版含答案,共10页。
2018版高考一轮总复习数学(文)模拟演练 第10章 概率 10-3 word版含答案: 这是一份2018版高考一轮总复习数学(文)模拟演练 第10章 概率 10-3 word版含答案,共7页。
2018版高考一轮总复习数学(文)模拟演练 第10章 概率 10-1 word版含答案: 这是一份2018版高考一轮总复习数学(文)模拟演练 第10章 概率 10-1 word版含答案,共6页。