高三数学人教版a版数学(理)高考一轮复习教案:9.4 随机事件的概率 word版含答案
展开第四节 随机事件的概率
事件与概率
了解随机事件发生的不确定性和频率的稳定性,了解概率的意
义,了解频率与概率的区别.
了解两个互斥事件的概率加法公式.
知识点一 概率与频率
1.在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.我们把这个常数叫作随机事件A的概率,记作P(A).
2.频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率:P(A)=1.
(3)不可能事件的概率:P(A)=0.
易误提醒 易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.
[自测练习]
1.给出下列三个命题,其中正确命题有________个.
①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率.
解析:①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念.
答案:0
2.某城市2015年的空气质量状况如下表所示:
污染指数T
30
60
100
110
130
140
概率P
其中污染指数T≤50时,空气质量为优;50
答案:
知识点二 互斥事件和对立事件
事件
定义
性质
互斥事件
在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件
P(A+B)=P(A)+P(B),(事件A,B是互斥事件);
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)(事件A1,A2,…,An任意两个互斥)
对立事件
在一个随机试验中,两个试验不会同时发生,并且一定有一个发生的事件A和称为对立事件
P()=1-P(A)
易误提醒 互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.
[自测练习]
3.装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是( )
“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”.
A.①② B.①③
C.②③ D.①②③
解析:从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A“两球都为白球”发生时,①②不可能发生,且A不发生时,①不一定发生,②不一定发生,故非对立事件,而A发生时,③可以发生,故不是互斥事件.
答案:A
4.运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )
A. B.
C. D.
解析:从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P=.
答案:A
考点一 事件的关系|
1.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则( )
A.A与B是互斥而非对立事件
B.A与B是对立事件
C.B与C是互斥而非对立事件
D.B与C是对立事件
解析:根据互斥事件与对立事件的意义作答,A∩B={出现点数1或3},事件A,B不互斥也不对立;B∩C=∅,B∪C=Ω,故事件B,C是对立事件.
答案:D
2.设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件.
答案:A
3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡
B.恰有一张移动卡
C.都不是移动卡
D.至少有一张移动卡
解析:至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.
答案:A
集合法判断互斥事件与对立事件的方法
1.由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.
2.事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
考点二 随机事件的概率|
(2015·高考陕西卷)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
天气
晴
雨
阴
阴
阴
雨
阴
晴
晴
晴
阴
晴
晴
晴
晴
日期
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
天气
晴
阴
雨
阴
阴
晴
阴
晴
晴
晴
阴
晴
晴
晴
雨
(1)在4月份任取一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
[解] (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为.
(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为.
以频率估计概率,运动会期间不下雨的概率为.
1.某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了条形统计图(如图所示),则该中学参加本次数学竞赛的人数为________,如果90分以上(含90分)获奖,那么获奖的概率大约是________.
解析:由题图可知,参加本次竞赛的人数为4+6+8+7+5+2=32;90分以上的人数为7+5+2=14,所以获奖的频率为=0.437 5,即本次竞赛获奖的概率大约是0.437 5.
答案:32 0.437 5
考点三 互斥事件与对立事件的概率|
某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C.求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
[解] (1)P(A)=,P(B)==,
P(C)==.
(2)因为事件A,B,C两两互斥,所以P(A∪B∪C)=P(A)+P(B)+P(C)=++=.
故1张奖券的中奖概率为.
(3)P()=1-P(A+B)=1-=.故1张奖券不中特等奖且不中一等奖的概率为.
求复杂互斥事件概率的两种方法
(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.
(2)间接求法:先求此事件的对立事件,再用公式P(A)=1-P()求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就会较简便.
2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.
(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;
(2)求该地1位车主甲、乙两种保险都不购买的概率.
解:记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.
(1)由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,
所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.
(2)因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2. 31.正难则反思想求互斥事件的概率
【典例】 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
[思路点拨] 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.
[解] (1)由已知得25+y+10=55,x+30=45,
所以x=15,y=20.
该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为
=1.9(分钟).
(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)==,P(A2)==.
P(A)=1-P(A1)-P(A2)=1--=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
[思想点评] (1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.
(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.
(3)需准确理解题意,特别留心“至多…”“至少…”“不少于…”等语句的含义.
[跟踪练习] 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )
A.0.95 B.0.97
C.0.92 D.0.08
解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.
答案:C
A组 考点能力演练
1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )
A.甲是乙的充分不必要条件
B.甲是乙的必要不充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件,也不是乙的必要条件
解析:根据对立事件与互斥事件的关系知,甲是乙的必要但不充分条件.
答案:B
2.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为( )
A.0.5 B.0.3
C.0.6 D.0.9
解析:依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.
答案:A
3.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“都是红球”
C.“至少有一个黑球”与“至少有一个红球”
D.“恰有一个黑球”与“恰有两个黑球”
解析:A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.故选D.
答案:D
4.(2016·云南一检)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )
A. B.
C. D.
解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=.
答案:C
5.(2015·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )
A. B.
C. D.
解析:已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P==.
答案:A
6.(2016·温州十校联考)记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.
解析:根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为.
答案:
7.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是________.
解析:设摸出红球、白球、黄球的事件分别为A、B、C,由条件知P(A∪B)=P(A)+P(B)=0.65,
P(B∪C)=P(B)+P(C)=0.6,
又P(A∪B)=1-P(C),∴P(C)=0.35,
∴P(B)=0.25.
答案:0.25
8.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.
解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.
答案:
9.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率.
解:(1)厨余垃圾投放正确的概率约为==.
(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确.
事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为=0.7,所以P(A)约为1-0.7=0.3.
10.经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队等候的概率是多少?
(2)至少3人排队等候的概率是多少?
解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F互斥.
(1)记“至多2人排队等候”为事件G,则
G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)法一:记“至少3人排队等候”为事件H,则
H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
B组 高考题型专练
1.(2014·高考陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)
0
1 000
2 000
3 000
4 000
车辆数(辆)
500
130
100
150
120
(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得
P(A)==0.15,P(B)==0.12.
由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.
(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.
2.(2015·高考北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商品
顾客人数
甲
乙
丙
丁
100
√
×
√
√
217
×
√
×
√
200
√
√
√
×
300
√
×
√
×
85
√
×
×
×
98
×
√
×
×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.
(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.
(3)与(1)同理,可得:
顾客同时购买甲和乙的概率可以估计为=0.2,
顾客同时购买甲和丙的概率可以估计为=0.6,
顾客同时购买甲和丁的概率可以估计为=0.1.
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
高中数学高考高三数学人教版A版数学(理)高考一轮复习教案:9 4 随机事件的概率 Word版含答案: 这是一份高中数学高考高三数学人教版A版数学(理)高考一轮复习教案:9 4 随机事件的概率 Word版含答案,共12页。
高三数学人教版a版数学(理)高考一轮复习教案:8.6 双曲线 word版含答案: 这是一份高三数学人教版a版数学(理)高考一轮复习教案:8.6 双曲线 word版含答案,共14页。
高三数学人教版a版数学(理)高考一轮复习教案:8.8 曲线与方程 word版含答案: 这是一份高三数学人教版a版数学(理)高考一轮复习教案:8.8 曲线与方程 word版含答案,共12页。