2018-2019学年河南省商丘市柘城县九年级上期末数学模拟检测试题(含答案)
展开河南省商丘市柘城县2018-2019学年九年级(上)期末数学模拟检测试题
一.填空题(共6小题,满分24分,每小题4分)
1.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 .
2.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:
3.函数的图象如图所示,则结论:
①两函数图象的交点A的坐标为(2,2);
②当x>2时,y2>y1;
③当x=1时,BC=3;
④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是 .
4.梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则= .
5.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是 cm.
6.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN= 时,△AMN与原三角形相似.
二.选择题(共8小题,满分24分,每小题3分)
7.下列生态环保标志中,是中心对称图形的是( )
A. B.
C. D.
8.对于反比例函数y=﹣,下列说法不正确的是( )
A.图象分布在第二、四象限
B.当x>0时,y随x的增大而增大
C.图象经过点(1,﹣2)
D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2
9.下列事件中,属于必然事件的是( )
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是180°
D.抛一枚硬币,落地后正面朝上
10.如图,△ABC中,DE∥BC, =,AE=2cm,则AC的长是( )
A.2cm B.4cm C.6cm D.8cm
11.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )
A.0 B. C. D.1
12.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是( )
A.a=b B.a=2b C.a=2b D.a=4b
13.一个圆锥形工艺品,它的高为3cm,侧面展开图是半圆.则此圆锥的侧面积是( )
A.9π B.18π C.π D.27π
14.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )
A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6
C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6
三.解答题(共7小题,满分52分)
15.(5分)解方程:x2﹣4x﹣5=0.
16.(6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
17.(6分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
18.(7分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
(1)求证:DF是BF和CF的比例中项;
(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
19.(9分)如图,AB是⊙O的弦,AB=2,点C在弧AmB上运动,且∠ACB=30°.
(1)求⊙O的半径;
(2)设点C到直线AB的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系,并写出自变量x的取值范围.
20.(9分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) | 1 | 2 | 2.5 | 3 | 5 |
yA(万元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
21.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
参考答案
一.填空题
1.解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,
∴△=b2﹣4ac=0,
即:22﹣4(﹣m)=0,
解得:m=﹣1,
故选答案为﹣1.
2.解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(﹣5,﹣3),
∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,
即y=﹣5x2﹣50x﹣128,
故答案为y=﹣5x2﹣50x﹣128.
3.解:①将组成方程组得,
,
由于x>0,解得,故A点坐标为(2,2).
②由图可知,x>2时,y1>y2;
③当x=1时,y1=1;y2=4,则BC=4﹣1=3;
④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.
可见,正确的结论为①③④.
故答案为:①③④.
4.解:如图1:
∵AB=3, =2,
∴AF=2,BF=1,
∵AB∥CD,
∴△AEF∽△CED,
∴=,
∴==;
如图2:
∵AB=3, =2,
∴AF=6,BF=3,
∵AB∥CD,
∴△AEF∽△CED,
∴=,
∴==.
故答案为:或.
5.解:设母线长为R,则:65π=π×5R,
解得R=13cm.
6.【解答】解:由题意可知,AB=9,AC=6,AM=3,
①若△AMN∽△ABC,
则=,
即=,
解得:AN=2;
②若△AMN∽△ACB,
则=,
即=,
解得:AN=4.5;
故AN=2或4.5.
故答案为:2或4.5.
二.选择题(共8小题,满分24分,每小题3分)
7.解:A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选:B.
8.解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;
B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;
C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;
D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.
故选:D.
9.解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选:C.
10.解:∵DE∥BC,
∴=,
∵,AE=2cm,
∴=,
∴AC=6(cm),
故选:C.
11.解:所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,
则P=1,
故选:D.
12.解:对折两次后的小长方形的长为b,宽为a,
∵小长方形与原长方形相似,
∴=,
∴a=2b.
故选:B.
13.解:设圆锥的底面圆的半径为r,母线长为R,
则2πr=,
所以R=2r,
所以圆锥的高==r,
即r=3,解得r=3,则R=6,
所以此圆锥的侧面积=•2π•3•6=18π.
故选:B.
14.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.
三.解答题(共7小题,满分52分)
15.解:(x+1)(x﹣5)=0,
则x+1=0或x﹣5=0,
∴x=﹣1或x=5.
16.解:(1)∵第一道单选题有3个选项,
∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;
故答案为:;
(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,
画树状图得:
∵共有9种等可能的结果,小明顺利通关的只有1种情况,
∴小明顺利通关的概率为:;
(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;
∴建议小明在第一题使用“求助”.
17.解:(1)把点A(﹣1,a)代入y=x+4,得a=3,
∴A(﹣1,3)
把A(﹣1,3)代入反比例函数y=
∴k=﹣3,
∴反比例函数的表达式为y=﹣
(2)联立两个函数的表达式得
解得
或
∴点B的坐标为B(﹣3,1)
当y=x+4=0时,得x=﹣4
∴点C(﹣4,0)
设点P的坐标为(x,0)
∵S△ACP=S△BOC
∴
解得x1=﹣6,x2=﹣2
∴点P(﹣6,0)或(﹣2,0)
18.证明:(1)∵∠ACB=90°,CD⊥AB,
∴∠BCD=∠A,∠ADC=90°.
∵E是AC的中点,
∴DE=AE=CE,
∴∠ADE=∠A,
∴∠BCD=∠ADE.
又∠ADE=∠FDB,
∴∠FCD=∠FDB.
∵∠CFD=∠DFB,
∴△CFD∽△DFB,
∴DF2=BF•CF.
(2)∵AE•AC=AG•AD,
∴=.
∵∠A=∠A,
∴△AEG∽△ADC,
∴EG∥BC,
∴△EGD∽△FBD,
∴=.
由(1)知:△CFD∽△DFB,
∴=,
∴=,
∴EG•CF=ED•DF.
19.解:(1)∵∠APB=30°,
∴∠AOB=60°,又OA=OB,
∴△AOB是等边三角形,
∴⊙O的半径是2;
(2)∵点P到直线AB的距离为x,
∴△PAB的面积为×2×x=x,
弓形AB的面积=扇形AOB的面积﹣△AOB的面积
=﹣=π﹣,
∴y=x+π﹣(0≤x≤2+)
20.解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx,
求解得:
∴yB与x的函数关系式:yB=﹣0.2x2+1.6x
(2)根据表格中对应的关系可以确定为一次函数,
故设函数关系式yA=kx+b,将(1,0.4)(2,0.8)代入得:,
解得:,
则yA=0.4x;
(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,
W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8
即当投资B3万元,A12万元时所获总利润最大,为7.8万元.
21.解:(1)将A、C两点坐标代入抛物线,得
,
解得:,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC==10,
过点Q作QE⊥BC与E点,则sin∠ACB===,
∴=,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6±,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
河南省商丘市柘城县2023-2024学年九年级上学期期末数学试题(含答案): 这是一份河南省商丘市柘城县2023-2024学年九年级上学期期末数学试题(含答案),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
+河南省商丘市柘城县2023-2024学年九年级上学期1月期末数学试题: 这是一份+河南省商丘市柘城县2023-2024学年九年级上学期1月期末数学试题,共4页。
_河南省商丘市柘城县2023-2024学年九年级上学期1月期末数学试题(: 这是一份_河南省商丘市柘城县2023-2024学年九年级上学期1月期末数学试题(,共4页。