搜索
    上传资料 赚现金
    人教A版(2019)数学必修第一册(教案)基本不等式
    立即下载
    加入资料篮
    人教A版(2019)数学必修第一册(教案)基本不等式01
    人教A版(2019)数学必修第一册(教案)基本不等式02
    人教A版(2019)数学必修第一册(教案)基本不等式03
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学人教A版 (2019)2.2 基本不等式教学设计及反思

    展开
    这是一份数学人教A版 (2019)2.2 基本不等式教学设计及反思,共9页。教案主要包含了课时安排,第一课时,教学目标,教学重难点,教学过程,第二课时,第三课时等内容,欢迎下载使用。

    基本不等式

     

    【课时安排】

    3课时

    【第课时】

    教学目标】

    1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

    2.过程与方法:通过实例探究抽象基本不等式;

    3情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

    教学重点】

    教学重点:应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;

    教学难点:基本不等式等号成立条件

    教学过程】

    一、课题导入

    基本不等式的几何背景:

    如图是在北京召开的24国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

    教师引导学生从面积的关系去找相等关系或不等关系。

    二、讲授新课

    1.探究图形中的不等关系

    将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为ab那么正方形的边长为。这样,4直角三角形的面积的和2ab正方形的面积为。由于4直角三角形的面积小于正方形的面积,我们就得到了一个不等式:

    当直角三角形变为等腰直角三角形,a=b时,正方形EFGH缩为一个点,这时有

    2得到结论:一般的,如果

    3思考证明:你能给出它的证明吗?

    证明:因为

    所以,,即

    41从几何图形的面积关系认识基本不等式

    特别的,如果a>0b>0我们用分别代替ab可得

    通常我们把上式写作:

    2从不等式的性质推导基本不等式

    用分析法证明:

    要证1

    只要证a+b_____2

    要证2),只要证a+b-_____03

    要证(3),只要证(_____-_____4

    显然,4)是成立的。当且仅当a=b时,(4)中的等号成立。

    3理解基本不等式的几何意义

    在右图中,AB是圆的直径,点CAB上的一点,AC=aBC=b。过点C作垂直于AB的弦DE,连接ADBD。你能利用这个图形得出基本不等式的几何解释吗?

     

    易证tADtDB,那么D2A·B

    D.

    这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即ab,等号成立.

    因此:基本不等式几何意义是“半径不小于半弦

    评述:1如果把看作是正数ab的等差中项,看作是正数ab的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项

    2在数学中,我们称ab的算术平均数,称ab的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数

    [补充例题]

    1已知xy都是正数,求证:

    1≥2

    2xy)(x2y2)(x3y3x3y3

    分析:在运用定理:时,注意条件ab均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.

    解:xy都是正数

    00x20y20x30y30

    122

    2xy≥20  y2≥20  3y3≥20

    xy)(x2y2)(x3y3≥2·2·28x3y3

    即(xy)(x2y2)(x3y38x3y3

    3随堂练习

    1已知abc都是正数,求证

    ab)(bc)(ca8abc

    分析:对于此类题目,选择定理:a0b0)灵活变形,可求得结果

    解:abc都是正数

    ab≥20

    bc≥20

    ca≥20

    ab)(bc)(ca≥2·2·28abc

    即(ab)(bc)(ca8bc

    4课时小结

    本节课,我们学习了重要不等式a2b2≥2ab;两正数ab的算术平均数(),几何平均数()及它们的关系(.它们成立的条件不同,前者只要求ab都是实数,而后者要求ab都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:abab2

    课时

    教学目标】

    1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题

    2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值

    3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德

    教学重难点

    教学重点:基本不等式的应用

    教学难点:用基本不等式求最大值、最小值。

    教学过程】

    一、课题导入

    1.重要不等式:

    如果

    2.基本不等式:如果ab是正数,那么

    我们称的算术平均数,称的几何平均数

    成立的条件是不同的:前者只要求ab都是实数,而后者要求ab都是正数。

    二、讲授新课

    1)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

    2段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少

    解:(1)设矩形菜园的长为x m,宽为y m,则xy=100,篱笆的长为2x+y m。由

    可得。等号当且仅x=y时成立,此时x=y=10

    因此,这个矩形的长、宽都为10 m时,所用的篱笆最短,最短的篱笆是40m

    2)解法一:设矩形菜园的宽为x m,则长为(362xm,其中0x,其面积Sx362x)=·2x362x

    当且仅当2x362x,即x9时菜园面积最大,即菜园长9m,宽为9 m时菜园面积最大为81 m2

    解法二:设矩形菜园的长为x m宽为y m2(x+y)=36x+y=18矩形菜园的面积为xy m。由,可得

    当且仅当x=yx=y=9时,等号成立。

    因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积是81m

    归纳:1两个正数的和为定值时,它们的积有最大值,即若abR,且abMM为定值,则ab,等号当且仅当ab时成立

    2两个正数的积为定值时,它们的和有最小值,即若abR,且abPP为定值,则ab≥2,等号当且仅当ab时成立

    某工厂要建造一个长方体无盖贮水池,其容积为4800m3深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

    分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。

    解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得

    因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600

    评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。

    归纳:用均值不等式解决此类问题时,应按如下步骤进行:

    1先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;

    2建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;

    3在定义域内,求出函数的最大值或最小值;

    4正确写出答案

    三、随堂练习

    1已知x≠0,当x取什么值时,x2的值最小最小值是多少

    四、课时小结

    本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题。在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:1函数的解析式中,各项均为正数;2函数的解析式中,含变数的各项的和或积必须有一个为定值;3函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等

    课时

    教学目标】

    1.知识与技能:进一步掌握基本不等式;会用此不等式证明不等式会应用此不等式求某些函数的最值能够解决一些简单的实际问题;

    2.过程与方法:通过例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值

    3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德

    教学重点】

    教学重点:掌握基本不等式,会用此不等式证明不等式,会用此不等式求某些函数的最值

    教学难点:利用此不等式求函数的最大、最小值。

    教学过程】

    一、课题导入

    1.基本不等式:如果ab是正数,那么

    2.用基本不等式求最大(小)值的步骤。

    二、讲授新课

    1利用基本不等式证明不等式

    已知m>0求证

    [思维切入]因为m>0所以可把分别看作基本不等式中的ab直接利用基本不等式。

    [证明]因为m>0,由基本不等式得

    当且仅当=,即m=2时,取等号。

    规律技巧总结注意:m>0这一前提条件和=144为定值的前提条件。

    三、随堂练习

    [思维拓展1]已知abcd都是正数,求证

    [思维拓展2]求证

    求证:

    思维切入由于不等式左边含有字母a右边无字母直接使用基本不等式无法约掉字母a而左边这样变形后在用基本不等式即可得证

    [证明]

    当且仅当=a-3a=5等号成立

    规律技巧总结通过加减项的方法配凑成基本不等式的形式

    2利用不等式求最值

    31x>0的最小值

    2x<0的最大值

    [思维切入]本题1x>0=36两个前提条件2x<0可以用-x>0来转化

    1因为x>0由基本不等式得

    当且仅当x=取最小值12

    2因为x<0所以-x>0由基本不等式得

    所以

    当且仅当x=-取得最大-12

    规律技巧总结利用基本不等式求最值时个项必须为正数若为负数则添负号变正

    随堂练习

    [思维拓展1](x>5)的最小值

    [思维拓展2]x>0y>0xy的最小值

    四、课时小结

    用基本不等式证明不等式和求函数的最大、最小值。

    作业布置

    1.证明:

    2,则为何值时有最小值,最小值为几?

    相关教案

    人教A版 (2019)必修 第一册2.2 基本不等式教案及反思: 这是一份人教A版 (2019)必修 第一册2.2 基本不等式教案及反思,共6页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点,设计意图等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册2.2 基本不等式表格教案: 这是一份高中数学人教A版 (2019)必修 第一册2.2 基本不等式表格教案,共6页。教案主要包含了新课,例题,小结等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册2.2 基本不等式教案设计: 这是一份高中数学人教A版 (2019)必修 第一册2.2 基本不等式教案设计,共4页。教案主要包含了目标及其解析,教学问题诊断分析,教学支持条件,课时分配.等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版(2019)数学必修第一册(教案)基本不等式
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map