初中数学第五章 相交线与平行线综合与测试优秀单元测试同步训练题
展开第5章 《相交线与平行线》单元测试3
一.选择题(共10小题)
1.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )
A.0 B.1 C.2 D.3
2.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( )
A.两点之间,线段最短
B.平行于同一条直线的两条直线平行
C.垂线段最短
D.两点确定一条直线
3.如图,AB∥CD,EF与AB,CD分别交于点G,H,∠CHG的平分线HM交AB于点M,若∠EGB=50°,则∠GMH的度数为( )
A.50° B.55° C.60° D.65°
4.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
5.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )
A.15° B.25° C.45° D.60°
6.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )
A.48 B.96 C.84 D.42
7.将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=130°,则∠BFG的度数为( )
A.130° B.120° C.110° D.100°
8.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )
A.20° B.30° C.40° D.50°
9.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是( )
A.◎代表∠FEC B.@代表同位角
C.▲代表∠EFC D.※代表AB
10.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40° B.50° C.60° D.70°
二.填空题(共4小题)
11.如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是 cm.
12.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是 .
13.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE= 度.
14.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为 cm.
三.解答题(共2小题)
15.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.
16.如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.
(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的x:b的值;
(2)在直线EE′经过原矩形的一个顶点的情形下,连接BE′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?
试题解析
1.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )
A.0 B.1 C.2 D.3
解:①若a>b,ab>0,则<;真命题:
理由:∵a>b,ab>0,
∴a>b>0,或b<a<0,
∴<;
②若ab>0,<,则a>b,真命题;
理由:∵ab>0,
∴a、b同号,
∵<,
∴a>b;
③若a>b,<,则ab>0,真命题;
理由:∵a>b,<,
∴a、b同号,
∴ab>0
∴组成真命题的个数为3个;
故选:D.
2.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( )
A.两点之间,线段最短
B.平行于同一条直线的两条直线平行
C.垂线段最短
D.两点确定一条直线
解:这样做增加了游人在桥上行走的路程,其中蕴含的数学道理是:利用两点之间线段最短,可得出曲折迂回的曲桥增加了游人在桥上行走的路程.
故选:A.
3.如图,AB∥CD,EF与AB,CD分别交于点G,H,∠CHG的平分线HM交AB于点M,若∠EGB=50°,则∠GMH的度数为( )
A.50° B.55° C.60° D.65°
解:∵AB∥CD,
∴∠EHD=∠EGB=50°,
∴∠CHG=180°﹣∠EHD=180°﹣50°=130°.
∵HM平分∠CHG,
∴∠CHM=∠GHM=∠CHG=65°.
∵AB∥CD,
∴∠GMH=∠CHM=65°.
故选:D.
4.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
解:∵△ABE向右平移2cm得到△DCF,
∴EF=AD=2cm,AE=DF,
∵△ABE的周长为16cm,
∴AB+BE+AE=16cm,
∴四边形ABFD的周长=AB+BE+EF+DF+AD
=AB+BE+AE+EF+AD
=16cm+2cm+2cm
=20cm.
故选:C.
5.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )
A.15° B.25° C.45° D.60°
解:∵∠B=90°,∠A=30°,
∴∠ACB=60°.
∵∠EDF=90°,∠F=45°,
∴∠DEF=45°.
∵EF∥BC,
∴∠CEF=∠ACB=60°,
∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.
故选:A.
6.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )
A.48 B.96 C.84 D.42
解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,
∴OE=DE﹣DO=10﹣4=6,
∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.
故选:A.
7.将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=130°,则∠BFG的度数为( )
A.130° B.120° C.110° D.100°
解:∵AD∥BC,∠1=130°,
∴∠BFE=180°﹣∠1=50°,
又∵∠EGF=90°,∠FEG=30°,
∴∠EFG=60°,
∴∠BFG=50°+60°=110°,
故选:C.
8.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )
A.20° B.30° C.40° D.50°
解:∵直线a∥b,
∴∠1+∠BCA+∠2+∠BAC=180°,
∵∠BAC=30°,∠BCA=90°,∠1=20°,
∴∠2=40°.
故选:C.
9.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是( )
A.◎代表∠FEC B.@代表同位角
C.▲代表∠EFC D.※代表AB
证明:延长BE交CD于点F,
则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).
又∠BEC=∠B+∠C,得∠B=∠EFC.
故AB∥CD(内错角相等,两直线平行).
故选:C.
10.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40° B.50° C.60° D.70°
解:由题意可得:∠1=∠3=∠4=40°,
则∠2=∠5==70°.
故选:D.
11.如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是 5 cm.
解:∵PB⊥l,PB=5cm,
∴P到l的距离是垂线段PB的长度5cm,
故答案为:5.
12.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是 48° .
解:∵a∥b,
∴∠2=∠1+∠CAB=18°+30°=48°,
故答案为:48°
13.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE= 20 度.
解:过点C作CF∥AB,
已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,
∴AB∥DE,
∴CF∥DE,
∴∠BCF+∠ABC=180°,
∴∠BCF=60°,
∴∠DCF=20°,
∴∠CDE=∠DCF=20°.
故答案为:20.
14.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为 13 cm.
解:∵将线段DC沿着CB的方向平移7cm得到线段EF,
∴EF=DC=4cm,FC=7cm,∠C=∠BFE,
∵AB=AC,BC=12cm,
∴∠B=∠C,BF=5cm,
∴∠B=∠BFE,
∴BE=EF=4cm,
∴△EBF的周长为:4+4+5=13(cm).
故答案为:13.
15.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.
解:∵EF∥GH,
∴∠ABD+∠FAC=180°,
∴∠ABD=180°﹣72°=108°,
∵∠ABD=∠ACD+∠BDC,
∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.
16.如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.
(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的x:b的值;
(2)在直线EE′经过原矩形的一个顶点的情形下,连接BE′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?
(Ⅰ)证明:∵AB=a,AD=b,BE=x,S梯形ABEF=S梯形CDFE,
∴a(x+AF)=a(EC+b﹣AF),
∴2AF=EC+(b﹣x).
又∵EC=b﹣x,
∴2AF=2EC.
∴AF=EC.
(Ⅱ)解:(1)当直线EE′经过原矩形的顶点D时,如图(一)
∵EC∥E′B′,
∴=,
由EC=b﹣x,E′B′=EB=x,DB′=DC+CB′=2a,
得,
∴x:b=.
当直线E′E经过原矩形的顶点A时,如图(二)
在梯形AE′B′D中,
∵EC∥E′B′,点C是DB′的中点,
∴CE=(AD+E′B′),
即b﹣x=(b+x),
∴x:b=.
(2)如图(一),当直线EE′经过原矩形的顶点D时,BE′∥EF,
证明:连接BF,
∵FD∥BE,FD=BE,
∴四边形FBED是平行四边形,
∴FB∥DE,FB=DE,
又∵EC∥E′B′,点C是DB′的中点,
∴DE=EE′,
∴FB∥EE′,FB=EE′,
∴四边形BE′EF是平行四边形,
∴BE′∥EF.
如图(二),当直线EE′经过原矩形的顶点A时,显然BE′与EF不平行,
设直线EF与BE′交于点G,过点E′作E′M⊥BC于M,则E′M=a,
∵x:b=,
∴EM=BC=b,
若BE′与EF垂直,则有∠GBE+∠BEG=90°,
又∵∠BEG=∠FEC=∠MEE′,∠MEE′+∠ME′E=90°,
∴∠GBE=∠ME′E,
在Rt△BME′中,tan∠E′BM=tan∠GBE==,
在Rt△EME′中,tan∠ME′E==,
∴=.
又∵a>0,b>0,
=,
∴当=时,BE′与EF垂直.
七年级下数学人教版《期末总复习》单元测试汇总: 这是一份七年级下数学人教版《期末总复习》单元测试汇总,共17页。试卷主要包含了填空题,选择题,计算与证明,探索题等内容,欢迎下载使用。
2021学年第五章 相交线与平行线综合与测试单元测试复习练习题: 这是一份2021学年第五章 相交线与平行线综合与测试单元测试复习练习题,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版七年级下册第十章 数据的收集、整理与描述综合与测试优秀单元测试同步练习题: 这是一份初中数学人教版七年级下册第十章 数据的收集、整理与描述综合与测试优秀单元测试同步练习题,共17页。试卷主要包含了下列采用的调查方式中,合适的是等内容,欢迎下载使用。