2021届二轮复习 三角函数的图象与性质 课时作业(全国通用) 练习
展开第1讲 三角函数的图象与性质
限时40分钟 满分80分
一、选择题(本大题共12小题,每小题5分,共60分)
1.(2020·南昌段考)已知角θ的始边与x轴的非负半轴重合,终边过点M(-3,4),则cos2θ-sin2θ+tan θ的值为( )
A.- B.
C.- D.
解析:A [设O为坐标原点,则由已知得|OM|=5,因而cos θ=-,sin θ=,tan θ=-,则cos2θ-sin2θ+tan θ=--=-.]
2.(2020·青岛三模)如图①,这个美妙的螺旋叫做特奥多鲁斯螺旋,是由公元5世纪古希腊哲学家特奥多鲁斯给出的,螺旋由一系列直角三角形组成,如图②,第一个三角形是边长为1的等腰直角三角形,以后每个直角三角形以上一个三角形的斜边为直角边,另一条直角边为1.将这些直角三角形在公共顶点处的角依次记为α1,α2,α3,…,则与α1+α2+α3+α4最接近的角是( )
参考值:tan 55°≈1.428,tan 60°≈1.732,tan 65°≈2.145,≈1.414
A.120° B.130°
C.135° D.140°
解析:C [由题意可得,α1,α2,α3,α4都是锐角,且α1=45°,tan α2==,tan α3==,所以α3=30°,tan α4==,所以α1+α3=75°.又tan(α2+α4)==≈1.87,接近tan 60°,故α2+α4接近60°,故与α1+α2+α3+α4最接近的角是135°.]
3.(2020·东营模拟卷)函数f(x)=的最小正周期为( )
A. B.
C.π D.2π
解析:C [由已知得f(x)====sin x·cos x=sin 2x,所以f(x)的最小正周期为T==π,故选C.]
4.(2020·成都二诊)将函数y=2sinsin的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数恰为奇函数,则φ的最小值为( )
A. B.
C. D.
解析:A [由y=2sinsin可得y=2sincos=sin,该函数的图象向左平移φ个单位长度后,所得图象对应的函数解析式为g(x)=sin=sin,因为g(x)=sin为奇函数,所以2φ+=kπ(k∈Z),φ=-(k∈Z),又φ>0,故φ的最小值为,选A.]
5.(2020·广州模拟)已知函数f(x)=sin(ω>0)在区间上单调递增,则ω的取值范围为( )
A. B.
C. D.
解析:B [通解:因为x∈,所以ωx+∈,因为函数f(x)=sin(ω>0)在区间上单调递增,所以又ω>0,所以0<ω≤,选B.
优解:取ω=1,f=sin=-sin<0,f=sin=sin=1,f=sin=sin=,不满足题意,排除A,C,D,选B.]
6.(2020·洛阳统考)设函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于直线x=0对称,则y=f(x)在的值域为( )
A.[-,0] B.[-2,0]
C.(-,0) D.(-2,0)
解析:A [由题意得函数f(x)=2sin,因为其图象关于直线x=0对称,所以2×0++φ=+kπ(k∈Z),即φ=+kπ(k∈Z),又|φ|<,所以φ=,f(x)=2sin=2cos 2x.当≤x≤时,≤2x≤,所以y=f(x)在上的值域为[-,0].]
7.(2020·天津卷)将函数y=sin的图象向右平移个单位长度,所得图象对应的函数( )
A.在区间上单调递增
B.在区间上单调递减
C.在区间上单调递增
D.在区间上单调递减
解析:A [由函数图象平移变换的性质可知:
将y=sin 的图象向右平移个单位长度之后的解析式为:
y=sin=2sin x.
则函数的单调递增区间满足:2kπ-≤2x≤2kπ+(k∈Z),
即kπ-≤x≤kπ+(k∈Z) ,
令k=1可得一个单调递增区间为:.
函数的单调递减区间满足:2kπ+≤2x≤2kπ+(k∈Z),
即kπ+≤x≤kπ+(k∈Z) ,
令k=1可得一个单调递减区间为:.本题选择A选项.]
8.(2020·贵阳监测)函数f(x)=Asin(ω>0)的图象与x轴正半轴交点的横坐标构成一个公差为的等差数列,若要得到函数g(x)=Asin ωx的图象,只要将f(x)的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
解析:D [正弦函数图象与x轴相邻交点横坐标相差为半个周期,即d==,又因为d=,所以ω=2,则f(x)=Asin=Asin,所以只要将函数f(x)的图象向右平移个单位就能得到g(x)=sin ωx的图象.]
9.
(2020·德州三模)如图是函数f(x)=Asin(2x+φ)图象的一部分,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=,则( )
A.f(x)在区间内单调递增
B.f(x)在区间内单调递减
C.f(x)在区间内单调递增
D.f(x)在区间内单调递减
解析:A [根据图象得出:A=2,对称轴方程为x=,所以2sin(x1+x2+φ)=2⇒x1+x2+φ=,
所以x1+x2=-φ,因为f(x1+x2)=,
所以2sin=,即sin(π-φ)=,因为|φ|≤,所以φ=,所以f(x)=2sin,因为-+2kπ≤2x+≤+2kπ,k∈Z,所以-+kπ≤x≤+kπ,k∈Z,即为f(x)的单调递增区间.]
10.(2020·辽宁省五校协作体联考)设ω>0,将函数y=2cos的图象向右平移个单位长度后与函数y=2sin的图象重合,则ω的最小值是( )
A. B.
C. D.
解析:C [通解 将函数y=2cos的图象向右平移个单位长度后,得y=2cos的图象,由已知得2cos=2sin,所以cos=sin,当ω=时,cos=cos≠sin;当ω=时,cos=cos≠sin;当ω=时,cos=cos=sin,所以ω的最小值为.故选C.
优解 将函数y=2cos的图象向右平移个单位长度后,得y=2cos=2cos的图象,由已知得cos=sin,所以sin=sin,所以++2kπ=ωx+,k∈Z,所以ω=+10k,k∈Z,又ω>0,所以ω的最小值为.故选C.]
11.(多选题)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是( )
A.sin α+cos α B.sin α-cos α
C.sin αcos α D.
解析:CD [本题考查三角函数定义的应用及三角函数值符号的判断.由已知得r=|OP|=,则sin α=>0,cos α=-<0,tan α=-m<0,
∴sin x+cos α的符号不确定,sin α-cos α>0,sin αcos α<0,=cos α<0.故选CD.]
12.(2020·东营模拟卷)设函数f(x)=sin(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:
①f(x)在(0,2π)有且仅有3个极大值点;②f(x)在(0,2π)有且仅有2个极小值点;
③f(x)在单调递增;④ω的取值范围是.
其中所有正确结论的编号是( )
A.①④ B.②③
C.①②③ D.①③④
解析:
D [∵f(x)=sin(ω>0),在[0,2π]有且仅有5个零点.∴0≤x≤2π,≤ωx+≤2πω+,5π≤2πω+<6π,≤ω<,④正确.如图x1,x2,x3为极大值点为3个,①正确;极小值点为2个或3个. ②不正确.
当0<x<时,<ωx+<+,当ω=时,+=+=<.
∴③正确,故选D.]
二、填空题(本大题共4小题,每小题5分,共20分)
13.(2020·东营模拟卷)函数f(x)=sin-3cos x的最小值为________.
解析:∵f(x)=sin-3cos x=-cos 2x-3cos x,
∴f(x)min=-4.
答案:-4
14.(2020·吉林三模)将函数f(x)=2cos 2x的图象向右平移个单位后得到函数g(x)的图象,若函数g(x)在区间和上均单调递增,则实数a的取值范围是____________.
解析:由题意可知,函数f(x)在区间和上均单调递增,根据f(x)=2cos 2x的图象可知,-≤0且≤2a-≤π,解得≤a≤.
答案:
15.(2020·北京卷)设函数f(x)=cos (ω>0).若f(x)≤f对任意的实数x都成立,则ω的最小值为________.
解析:本题考查三角函数.∵f(x)≤f对任意x∈R恒成立,∴f为f(x)的最大值,∴f=cos =1,∴ω-=2kπ,解得ω=8k+,k∈Z,又∵ω>0,∴ω的最小值为.
答案:
16.(2020·烟台三模)函数f(x)=的图象与函数g(x)=2sinx(0≤x≤4)的图象的所有交点为(x1,y1),(x2,y2),…,(xn,yn),则f(y1+y2+…+yn)+g(x1+x2+…+xn)=________.
解析:如图,画出函数f(x)和g(x)的图象,可知有4个交点,并且关于点(2,0)对称,所以y1+y2+y3+y4=0,x1+x2+x3+x4=8,所以f(y1+y2+y3+y4)+g(x1+x2+x3+x4)=f(0)+g(8)=+0=.
答案: