- 逻辑推理专练 试卷 2 次下载
- 80分小题精准练(五) 试卷 0 次下载
- 规范解答集训(四) 立体几何 试卷 试卷 2 次下载
- 单科标准练(二) 试卷 0 次下载
- 单科标准练(三) 试卷 0 次下载
规范解答集训(三) 概率与统计 试卷
展开规范解答集训(三) 概率与统计
(建议用时:40分钟)
1.某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一、二、三等奖(分别对应成绩等级的一、二、三等).现有某考场所有考生的两科成绩等级统计如图1所示,其中获数学二等奖的考生有12人.
图1
(1)求该考场考生中获语文一等奖的人数;
(2)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图2所示),求样本的平均数及方差并进行比较分析;
图2
(3)已知本考场的所有考生中,恰有3人两科均获一等奖,在至少一科获一等奖的考生中,随机抽取2人进行访谈,求这2人两科均获一等奖的概率.
[解] (1)∵获数学二等奖的考生有12人,
∴该考场考生的总人数为=50,
故该考场获语文一等奖的考生人数为50×(1-0.38×2-0.16)=4.
(2)设获数学二等奖考生综合得分的平均数和方差分别为1,s,获语文二等奖考生综合得分的平均数和方差分别为2,s.
1==88,
2==85,
s=×[(-7)2+(-4)2+42+22+52]=22,
s=×[(-6)2+42+(-1)2+12+22]=11.6,
∵88>85,11.6<22,∴获数学二等奖考生较获语文二等奖考生综合素质测试的平均分高,但是成绩差距较大,稳定性较差.
(3)两科均获一等奖的考生共有3人,则仅数学获一等奖的考生有2人,仅语文获一等奖的考生有1人.
把两科均获一等奖的3人分别记为A1,A2,A3,仅数学获一等奖的2人分别记为B1,B2,仅语文获一等奖的1人记为C,
则在至少一科获一等奖的考生中,随机抽取2人的基本事件有A1A2,A1A3,A1B1,A1B2,A1C,A2A3,A2B1,A2B2,A2C,A3B1,A3B2,A3C,B1B2,B1C,B2C,共15个.
记“这2人两科均获一等奖”为事件M,
则事件M包含的基本事件有A1A2,A1A3,A2A3,共3个,
∴P(M)==,
故这2人两科均获一等奖的概率为.
2.(2019·唐山模拟)最近青少年的视力健康问题引起人们的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查.
(1)若从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;
(2)若某小学被抽中,调查得到了该小学前五个年级近视率y的数据如下表:
年级号x | 1 | 2 | 3 | 4 | 5 |
近视率y | 0.05 | 0.09 | 0.16 | 0.20 | 0.25 |
根据前五个年级的数据,利用最小二乘法求出y关于x的线性回归方程,并根据方程预测六年级学生的近视率.
附:回归直线=x+的斜率和截距的最小二乘法估计公式分别为=,=- .
参考数据:xiyi=2.76,x=55.
[解] (1)由24∶24∶12=2∶2∶1,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a1,a2,b1,b2,c,
从这5所学校中随机抽取3所学校的所有基本事件为(a1,a2,b1),(a1,a2,b2),(a1,a2,c),(a1,b1,b2),(a1,b1,c),(a1,b2,c),(a2,b1,b2),(a2,b1,c),(a2,b2,c),(b1,b2,c),共10种,
设事件A表示“抽到的这3所学校中,小学、初中、高中分别有一所”,则事件A包含的基本事件为(a1,b1,c),(a1,b2,c),(a2,b1,c),(a2,b2,c),共4种,故P(A)==.
(2)由题中表格数据得=3,=0.15,5 =2.25,52=45,且由参考数据:
xiyi=2.76,x=55,
得==0.051,=0.15-0.051×3=-0.003,
得线性回归方程为=0.051x-0.003.
当x=6时,代入得=0.051×6-0.003=0.303,
所以六年级学生的近视率在0.303左右.
3.(2019·昆明模拟)《中国大能手》是央视推出的一档大型职业技能挑战赛类的节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加《中国大能手》职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如表1:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
甲 | × | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 |
乙 | × | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
表1
据表1中甲、乙两位选手完成该项关键技能挑战所用时间的数据,应用统计软件得表2:
| 均值/秒 | 方差 |
甲 | 85 | 50.2 |
乙 | 84 | 54 |
表2
(1)在表1中,从选手甲完成挑战用时低于90秒的成绩中,任取2个,求这2个成绩都低于80秒的概率;
(2)若该公司只有一个参赛名额,以完成该项关键技能挑战所用时间为标准,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.
[解] (1)选手甲完成挑战用时低于90秒的成绩共有6个,
其中低于80秒的成绩有3个,分别记为A1,A2,A3,其余的3个分别记为B1,B2,B3,从6个成绩中任取2个的所有取法有:A1A2,A1A3,A1B1,A1B2,A1B3,A2A3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,B1B2,B1B3,B2B3,共15种,其中2个成绩都低于80秒的有A1A2,A1A3,A2A3,共3种,
所以所取的2个成绩都低于80秒的概率P==.
(2)甲、乙两位选手完成关键技能挑战的次数都为10,挑战失败的次数都为5,所以只需要比较他们完成关键技能挑战的情况即可,
其中甲=85(秒),乙=84(秒),
s=50.2,s=54.
答案①:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但甲>乙,乙选手平均用时更短.
答案②:选手甲代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,虽然甲>乙,但两者相差不大,水平相当,s<s,表明甲选手的发挥更稳定.
答案③:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但乙<甲,乙选手平均用时更短,从表1中的数据整体看,甲、乙的用时都逐步减少,s>s,说明乙选手进步幅度更大,成绩提升趋势更好.(答案不唯一)
4.(2019·昆明模拟)互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:
| 1日 | 2日 | 3日 | 4日 | 5日 |
外卖甲日接单x/百单 | 5 | 2 | 9 | 8 | 11 |
外卖乙日接单y/百单 | 2 | 3 | 10 | 5 | 15 |
(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;
(2)据统计表明,y与x之间具有线性关系.
①请用相关系数r对y与x之间的相关性强弱进行判断(若|r|>0.75,则可认为y与x有较强的线性相关关系(r值精确到0.001));
②经计算求得y与x之间的回归方程为=1.382x-2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x值精确到0.01).
相关公式:r=.
参考数据: (xi-)(yi-)=66,
≈77.
[解] (1)由题可知==7(百单),
==7(百单).
外卖甲的日接单量的方差s=10,外卖乙的日接单量的方差s=23.6,
因为=,s<s,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.
(2)①计算可得,相关系数r=≈0.857>0.75,
所以可认为y与x之间有较强的线性相关关系.
②令y≥25,得1.382x-2.674≥25,解得x≥20.02,
又20.02×100×3=6 006,
所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元.
5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
(xi-)2 | (wi-)2 | (xi-)(yi-) | (wi-)(yi-) | |||
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1 469 | 108.8 |
表中wi=,=wi.
(1)根据散点图判断,=+ 与=+哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线=+的斜率和截距的最小二乘法估计分别为=,=- .
[解] (1)由散点图可以判断,=+适宜作为年销售量y关于年宣传费x的回归方程类型.
(2)令w=,先建立y关于w的线性回归方程.
由于===68,
=- =563-68×6.8=100.6,
所以y关于w的线性回归方程为=100.6+68w,
因此y关于x的回归方程为=100.6+68.
(3)①由(2)知,当x=49时,
年销售量y的预报值=100.6+68=576.6,
年利润z的预报值=576.6×0.2-49=66.32.
②根据(2)的结果知,年利润z的预报值
=0.2(100.6+68)-x=-x+13.6+20.12.
所以当==6.8,即x=46.24时,取得最大值.
故年宣传费为46.24千元时,年利润的预报值最大.