所属成套资源:2021年湘教版中考数学一轮单元复习 (含答案)
2021年湘教版中考数学一轮单元复习:《直角三角形》(含答案) 试卷
展开
湘教版中考数学一轮单元复习《直角三角形》一、选择题1.使两个直角三角形全等的条件是( )A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等 2.下列长度的三条线段不能组成直角三角形的是( )A.3,4,5 B.1,,2 C.6,8,10 D.1.5,2.5,3 3.适合下列条件的△ABC中,直角三角形的个数为( )①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个 B.2个 C.3个 D.4个 4.若△ABC的三边分别为5、12、13,则△ABC的面积是( )A.30 B.40 C.50 D.605.等腰三角形的腰长为13cm,底边的长是10cm,则该三角形的面积是( )cm2.A. 30 B. 40 C. 50 D. 60 6.已知直角三角形的两边分别为3和4,则第三边为( )A.5 B. C.5或 D.4 7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=( )A.86 B.64 C.54 D.48 8.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )
A.90 B.100 C.110 D.121 9.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有( ) A.4条 B.3条 C.2条 D.1条 10.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( ) A. B. C.3 D.4 二、填空题11.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)若a=2,b=4,则c=__________;(2)若a=2,c=4,则b=__________;(3)若c=26,a︰b=5︰12,则a=__________,b=__________. 12.已知在Rt△ABC中,∠C=90°,若斜边上的中线长为4,周长为18,则此△ABC面积为 . 13.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为_________ 14.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 . 15.如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有 个,写出其中一个点P的坐标是 .16.在△ABC中,AB、AC的垂直平分线分别交BC于点D、E.若BC=10,DE=4,则AD+AE= . 三、解答题17.如图,每个小方格的边长都为1.(1)求四边形ABCD的周长.(2)连接AC,试判断△ACD的形状,并说明理由. 18.如图所示,已知等边△ABC的两个顶点的坐标为A(-4,0),B(2,0).(1)用尺规作图作出点C,并求出点C的坐标;(2)求△ABC的面积. 19.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长. 20.如图,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.
参考答案1.D2.答案为:D.3.C.4.A5.答案为:D;6.C7.C8.C9.B10.答案为:A.11.(1)2;(2)2;(3)10,24;12.答案为:9;13..14.答案为:6或2或4.15.解:如图所示,满足条件的点P有8个,分别为(5,0)(8,0)(0,5)(0,6)(﹣5,0)(0,﹣5)(0,)(,0).故答案为:8;(5,0)(答案不唯一,写出8个中的一个即可).16.解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,∴如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故答案为:6或14.17.解:(1)由勾股定理可得:AB==3,BC==,CD==2,AD==,∴四边形ABCD的周长=AB+BC+CD+DA=3++2+=3++3;(2)△ACD为直角三角形,理由如下:由题意可知AC=5,又由(1)可知AD=,CD=2,∴AD2+CD2=()2+(2)2=25=AC2,∴△ACD为直角三角形.18.解:(1)作CH⊥AB于H. ∵A(-4,0),B(2,0),∴AB=6.∵△ABC是等边三角形,∴AH=BH=3.根据勾股定理,得CH=,∴C(-1,);同理,当点C在第三象限时,C(-1,-).故C点坐标为:C(-1,)或(-1,-);(2)S△ABC=×6×=9。 19.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=0.5BC=5,∴CM=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5. 20.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS); (2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.