|教案下载
搜索
    上传资料 赚现金
    2021年北师大版九年级数学下册 3.6 第2课时 切线的判定及三角形的内切圆1 教案设计
    立即下载
    加入资料篮
    2021年北师大版九年级数学下册 3.6 第2课时 切线的判定及三角形的内切圆1  教案设计01
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学北师大版6 直线与圆的位置关系第2课时教学设计

    展开
    这是一份数学北师大版6 直线与圆的位置关系第2课时教学设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    第2课时 切线的判定及三角形的内切圆





    1.掌握切线的判定定理,并会运用它进行切线的证明;(重点)


    2.能灵活选用切线的三种判定方法判定一条直线是圆的切线;(难点)


    3.掌握画三角形内切圆的方法和三角形内心的概念. (重点)











    一、情境导入





    下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出.仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况.


    二、合作探究


    探究点一:切线的判定


    【类型一】 已知直线过圆上的某一个点,证明圆的切线


    如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,求证:CD是⊙O的切线.





    解析:要证明CD是⊙O的切线,即证明OC⊥CD.连接OC,由AC=CD,∠D=30°,则∠A=∠D=30°,得到∠COD=60°,所以∠OCD=90°.


    证明:连接OC,如图,∵AC=CD,∠D=30°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°,∴∠COD=60°,∴∠OCD=90°,即OC⊥CD.∴CD是⊙O的切线.


    方法总结:一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.


    变式训练:见《学练优》本课时练习“课堂达标训练”第6题


    【类型二】 直线与圆的公共点没有确定时,证明圆的切线








    如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.


    解析:连接OM,过点O作ON⊥CD于点N,用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON即可.


    证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.


    方法总结:如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径.


    变式训练:见《学练优》本课时练习“课堂达标训练”第5题


    【类型三】 切线的性质和判定的综合应用


    如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.


    (1)求证:AC是△BDE的外接圆的切线;


    (2)若AD=2eq \r(3),AE=6,求EC的长.





    解析:(1)取BD的中点O,连接OE,如图,由∠BED=90°,可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,可得结论;(2)设⊙O的半径为r,根据勾股定理和平行线分线段成比例定理,可求答案.


    (1)证明:取BD的中点O,连接OE,如图所示,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心.∵BE平分∠ABC,∴∠CBE=∠OBE.∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;


    (2)解:设⊙O的半径为r,则OA=OD+DA=r+2eq \r(3),OE=r.在Rt△AEO中,有AE2+OE2=AO2,即62+r2=(r+2eq \r(3))2,解得r=2eq \r(3).∵OE∥BC,∴eq \f(AE,CE)=eq \f(AO,OB),即eq \f(6,CE)=eq \f(4\r(3),2\r(3)),∴CE=3.


    方法总结:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.


    变式训练:见《学练优》本课时练习“课后巩固提升”第6题


    探究点二:三角形的内切圆


    【类型一】 利用三角形的内心求角的度数


    如图,⊙O内切于△ABC,切点D、E、F分别在BC、AB、AC上.已知∠B=50°,∠C=60°,连接OE,OF,DE,DF,那么∠EDF等于( )





    A.40°


    B.55°


    C.65°


    D.70°


    解析:∵∠A+∠B+∠C=180°,∠B=50°,∠C=60°,∴∠A=70°.∵⊙O内切于△ABC,切点分别为D、E、F,∴∠OEA=∠OFA=90°,∴∠EOF=360°-∠A-∠OEA-∠OFA=110°,∴∠EDF=eq \f(1,2)∠EOF=55°.故选B.


    方法总结:解决本题的关键是理解三角形内心的概念,求出∠EOF的度数.


    变式训练:见《学练优》本课时练习“课堂达标训练”第10题








    【类型二】 求三角形内切圆半径


    如图,Rt△ABC中,∠C=90°,AC=6,CB=8,则△ABC的内切圆半径r为( )


    A.1 B.2 C.1.5 D.2.5


    解析:∵∠C=90°,AC=6,CB=8,∴AB=eq \r(AC2+BC2)=10,∴△ABC的内切圆半径r=eq \f(6+8-10,2)=2.故选B.


    方法总结:记住直角边为a、b,斜边为c的三角形的内切圆半径为eq \f(a+b-c,2),可以大大简化计算.


    变式训练:见《学练优》本课时练习“课后巩固提升”第2题


    【类型三】 三角形内心的综合应用


    如图①,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.


    (1)BE与IE相等吗?请说明理由.


    (2)如图②,连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.





    解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.


    解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;


    (2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=eq \f(1,2)∠ABC=30°,∠ICD=eq \f(1,2)∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.


    方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.


    三、板书设计


    切线的判定及三角形的内切圆


    1.切线的判定方法


    2.三角形的内切圆和内心的概念





    本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导、学生为主体的教学原则.
    相关教案

    初中数学北师大版九年级下册1 圆教案: 这是一份初中数学北师大版九年级下册1 圆教案,共4页。教案主要包含了考点梳理,精选例题等内容,欢迎下载使用。

    初中数学北师大版九年级下册1 圆教学设计: 这是一份初中数学北师大版九年级下册1 圆教学设计,共7页。

    初中数学北师大版九年级下册1 圆第2课时教案: 这是一份初中数学北师大版九年级下册1 圆第2课时教案,共6页。教案主要包含了三角形的内切圆等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map