|课件下载
终身会员
搜索
    上传资料 赚现金
    2.6 第2课时 营销问题及其他问题 PPT课件
    立即下载
    加入资料篮
    2.6 第2课时 营销问题及其他问题 PPT课件01
    2.6 第2课时 营销问题及其他问题 PPT课件02
    2.6 第2课时 营销问题及其他问题 PPT课件03
    2.6 第2课时 营销问题及其他问题 PPT课件04
    2.6 第2课时 营销问题及其他问题 PPT课件05
    2.6 第2课时 营销问题及其他问题 PPT课件06
    2.6 第2课时 营销问题及其他问题 PPT课件07
    2.6 第2课时 营销问题及其他问题 PPT课件08
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版九年级上册6 应用一元二次方程课文配套ppt课件

    展开
    这是一份初中数学北师大版九年级上册6 应用一元二次方程课文配套ppt课件,共30页。PPT课件主要包含了学习目标,情境引入,总结归纳,单个利润,解方程得,不合题意舍去,1+x2121,+x1+x1,1+x3,1+x2等内容,欢迎下载使用。

    1.会用一元二次方程的方法解决营销问题及其他类型问题.(重点、难点)2.进一步培养学生化实际问题为数学问题的能力及分析问题解决问题的能力.
    每到节日,各种促销迎面而来,如果你是商场经理,该如何定制营销方案呢?
    例1 :新华商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
    分析:本题的主要等量关系是:每台的销售利润×平均每天销售的数量= 5000元.
    解:设每台冰箱降价x元,根据题意,得 整理,得:x2 - 300x + 22500 = 0. 解方程,得: x1 = x2 = 150. ∴ 2900 - x = 2900 - 150 = 2750. 答:每台冰箱的定价应为2750元.
    例2:百佳超市将进货单价为40元的商品按50元出售时,能卖500个,已知该商品要涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
    分析:设商品单价为(50+x)元,则每个商品得利润[(50+x)-40]元,因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少10x个,故销售量为(500-10x)个,根据每件商品的利润×件数=8000,则(500-10x)· [(50+x)-40]=8000.
    解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(500-10x)个,则 (500-10x)· [(50+x)-40]=8000,整理得 x2-40x+300=0, 解得x1=10,x2=30都符合题意.当x=10时,50+x =60,500-10 x=400;当x=30时,50+x =80, 500-10 x=200.答:要想赚8000元,售价为60元或80元;若售价为60元,则进贷量应为400;若售价为80元,则进贷量应为200个.
    某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
    思考:这个问题设什么为x?有几种设法? 如果直接设每盆植x株,怎样表示问题中相关的量? 如果设每盆花苗增加的株数为x株呢?
    整理,得 x2 - 3x + 2 = 0.解这个方程,得 x1=1, x2=2.经检验,x1=1 , x2 = 2 都符合题意.答:要使每盆的盈利达到10元,每盆应植入4株或5株.
    解:设每盆花苗增加的株数为x株,则每盆花苗有(x+3)株,平均单株盈利为(3 - 0.5x)元.根据题意,得. (x + 3)(3 - 0.5x) = 10.
    利润问题常见关系式基本关系:(1)利润=售价-________; (3)总利润=____________×销量
    引例:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
    分析 :设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染示意图如下:
    第1轮传染后人数x+1
    第2轮传染后人数x(x+1)+x+1
    注意:不要忽视小明的二次传染
    x1= , x2= .
    根据示意图,列表如下:
    答:平均一个人传染了________个人.
    解:设每轮传染中平均一个人传染了x个人.
    注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.
    1+x+x(1+x)=(1+x)2
    想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?
    第2种做法 以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331人.
    第1种做法 以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331人.
    思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?
    经过n轮传染后共有 (1+x)n 人患流感.
    (1+x)2+(1+x)2∙x=
    例3:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?
    解:设每个支干长出x个小分支,
    则 1+x+x2=91
    x1=9,x2=-10(不合题意,舍去)
    答:每个支干长出9个小分支.
    1.在分析引例和例1中的数量关系时它们有何区别?
    每个树枝只分裂一次,每名患者每轮都传染.
    2.解决这类传播问题有什么经验和方法?
    (1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.
    运用一元二次方程模型解决实际问题的步骤有哪些?
    例4:某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?
    解:设每轮感染中平均一台电脑会感染 x 台电脑,则 1+x+x(1+x)=100,即(1+x)2=100. 解得 x1=9,x2=-11(舍去).∴x=9.
    4轮感染后,被感染的电脑数为(1+x)4=104>7000.
    答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染后,被感染的电脑会超过 7000 台.
    1.电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染. 每轮感染中平均一台电脑会感染几台电脑?
    解:设每轮感染中平均一台电脑会感染x台电脑.
    答:每轮感染中平均一台电脑会感染8台电脑; 第三轮感染中,被感染的电脑台数不会超过700台.
    解得x1=19 或 x2=-21 (舍去)
    依题意 60+60x+60x (1+x) =2400
    60 (1+x)2 =2400
    2.某种细胞细胞分裂时,每个细胞在每轮分裂中分成两个细胞.(1)经过三轮分裂后细胞的个数是 .(2)n轮分裂后,细胞的个数共是 .
    1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为( ) A.x2=1980 B. x(x+1)=1980 C. x(x-1)=1980 D.x(x-1)=19802.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为( ) A.1+x+x(1+x)=73 B.1+x+x2=73 C.1+x2 =73 D.(1+x)2=73
    3.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为( )?
    A.10 B.9 C.8 D.7
    4.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.
    解:设每件衬衫降价x元,根据题意得: (40-x)(20+2x)=1200 整理得,x2-30x+200=0 解方程得,x1=10,x2=20 因为要尽快减少库存,所以x=10舍去.答:每件衬衫应降价20元.
    5.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
    6.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?
    解:初三有x个班,根据题意列方程,得
    化简,得 x2-x-12=0
    解方程,得 x1=4, x2=-3(舍去)
    分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌
    7.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?
    解:设每个有益菌一次分裂出x个有益菌
    60+60x+60(1+x)x=24000
    x1=19,x2=-21(舍去)
    ∴每个有益菌一次分裂出19个有益菌.
    8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?
    三轮后有益菌总数为 24000×(1+19)=480000.
    9.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?
    解:设每天平均一个人传染了x人,
    解得 x1=-4 (舍去),x2=2.
    答:每天平均一个人传染了2人,这个地区一共将会有2187人患甲型流感.
    1+x+x(1+x)=9,
    9(1+x)5=9(1+2)5=2187,
    (1+x)7= (1+2)7=2187.
    相关课件

    初中数学北师大版九年级上册第二章 一元二次方程6 应用一元二次方程教案配套ppt课件: 这是一份初中数学北师大版九年级上册<a href="/sx/tb_c99899_t3/?tag_id=26" target="_blank">第二章 一元二次方程6 应用一元二次方程教案配套ppt课件</a>,共30页。PPT课件主要包含了情境引入,导入新课,讲授新课,针对练习,总结归纳,单个利润,合作探究,解方程得,不合题意舍去,1+x2121等内容,欢迎下载使用。

    人教版九年级上册21.3 实际问题与一元二次方程优秀课件ppt: 这是一份人教版九年级上册21.3 实际问题与一元二次方程优秀课件ppt,共46页。

    数学九年级上册6 应用一元二次方程习题ppt课件: 这是一份数学九年级上册6 应用一元二次方程习题ppt课件,共7页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2.6 第2课时 营销问题及其他问题 PPT课件
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map