数学1.3 证明学案
展开1.如图,下面的推理正确的是(D)
A.∵∠1=∠2,∴AB∥CD
B.∵∠ABC+∠BCD=180°,∴AD∥BC
C.∵AD∥BC,∴∠3=∠4
D.∵∠ABC+∠DAB=180°,∴AD∥BC
,(第1题)) ,(第2题))
2.如图,若a∥b,则∠1的度数为(C)
A. 90° B. 80°
C. 70° D. 60°
(第3题)
3.有一条直的宽纸带,按如图所示的方式折叠,则∠α的度数等于(C)
A. 50°
B. 60°
C. 75°
D. 85°
4.字母a,b,c,d分别代表正方形、线段、正三角形、圆这四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为a⊕c.
组合,,,连接,a⊕b,b⊕d,d⊕c
(第5题)
5.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3,试说明:AD平分∠BAC.
解:∵AD⊥BC,EG⊥BC,
∴AD∥EG(垂直于同一条直线的两条直线互相平行),
∴∠1=∠E(两直线平行,同位角相等),
∠2=∠3(两直线平行,内错角相等).
又∵∠3=∠E,∴∠1=∠2,
∴AD平分∠BAC(角平分线的定义).
(第6题)
6.如图,直线a∥b,三角形纸板的直角顶点A落在直线a上,两条直线分别交直线b于B,C两点.若∠1=42°,求∠2的度数.
【解】 ∵直线a∥b,∠1=42°,
∴∠ACB=42°.
又∵∠BAC=90°,
∴∠ABC=180°-∠BAC-∠ACB=48°.
∴∠2=∠ABC=48°.
(第7题)
7.如图,已知直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,求∠α的度数.
【解】 过点C作CE∥a.
∵a∥b,∴CE∥a∥b,
∴∠BCE=∠α,∠ACE=∠β=55°.
∵∠ACB=90°,
∴∠α=∠BCE=∠ACB-∠ACE=35°.
(第8题)
8.如图,P为△ABC内任意一点,∠1=∠2.求证:∠ACB与∠BPC互补.
【解】 在△BCP中,∠BPC+∠2+∠BCP=180°,
∴∠BPC=180°-(∠2+∠BCP).
又∵∠1=∠2,∴∠BPC=180°-(∠1+∠BCP),
∴∠BPC=180°-∠ACB,
∴∠ACB+∠BPC=180°,
即∠ACB与∠BPC互补.
(第9题)
9.如图,已知AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,求∠EPF的度数.
【解】 ∵EP⊥EF,∴∠PEF=90°.
∵∠BEP=50°,
∴∠BEF=∠BEP+∠PEF=140°.
∵AB∥CD,∴∠BEF+∠EFD=180°.
∴∠EFD=40°.
∵FP平分∠EFD,∴∠EFP=eq \f(1,2)∠EFD=20°.
∵∠PEF+∠EFP+∠EPF=180°,
∴∠EPF=70°.
10.如图,在△ABC中,∠ACB=90°,CD⊥AB,BE平分∠ABC,分别交AC,CD于点E,F.求证:∠CEF=∠CFE.
(第10题)
【解】 ∵BE平分∠ABC,
∴∠ABE=∠CBE.
∵∠ACB=90°,CD⊥AB,
∴∠CEF+∠CBE=90°,∠DFB+∠ABE=90°,
∴∠CEF=∠DFB.
∵∠CFE=∠DFB,
∴∠CEF=∠CFE.
11.阅读:如图①,∵CE∥AB,∴∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个事实,在图②中的四边形ABCD内引一条和边平行的直线,求出∠A+∠B+∠C+∠D的度数.
(第11题)
(第11题解)
【解】 如解图,过点D作DE∥AB交BC于点E,则∠A+∠ADE=180°,∠B+∠BED=180°.
由题意,得∠BED=∠C+∠CDE,
∴∠A+∠B+∠C+∠CDA=(∠A+∠ADE)+(∠CDE+∠C)+∠B=180°+∠BED+∠B=180°+180°=360°.
12.如图,∠EOF=90°,点A,B分别在射线OE,OF上移动,连结AB并延长至点D,∠DBO的平分线与∠OAB的平分线交于点C,试问:∠ACB的大小是否随点A,B的移动而发生变化?如果保持不变,请说明理由;如果随点A,B的移动而发生变化,请给出变化的范围.
(第12题)
【解】 ∠ACB不随点A,B的移动发生变化.理由如下:
∵BC,AC分别平分∠DBO,∠BAO,
∴∠DBC=eq \f(1,2)∠DBO,∠BAC=eq \f(1,2)∠BAO.
∵∠DBO+∠OBA=180°,∠OBA+∠BAO+∠AOB=180°,
∴∠DBO=∠BAO+∠AOB,
∴∠DBO-∠BAO=∠AOB=90°.
∵∠DBC+∠ABC=180°,∠ABC+∠ACB+∠BAC=180°,
∴∠DBC=∠BAC+∠ACB,
∴eq \f(1,2)∠DBO=eq \f(1,2)∠BAO+∠ACB,
∴∠ACB=eq \f(1,2)(∠DBO-∠BAO)=eq \f(1,2)∠AOB=45°.
初中数学浙教版八年级上册1.3 证明学案设计: 这是一份初中数学浙教版八年级上册1.3 证明学案设计,共4页。
初中数学浙教版八年级上册5.2 函数学案及答案: 这是一份初中数学浙教版八年级上册5.2 函数学案及答案,共7页。
初中数学浙教版八年级上册第5章 一次函数5.3 一次函数导学案: 这是一份初中数学浙教版八年级上册第5章 一次函数5.3 一次函数导学案,共5页。