|试卷下载
搜索
    上传资料 赚现金
    2020年《暑假衔接》人教版八年级上册:12.2 三角形全等的判定 同步练习 解析版
    立即下载
    加入资料篮
    2020年《暑假衔接》人教版八年级上册:12.2 三角形全等的判定 同步练习  解析版01
    2020年《暑假衔接》人教版八年级上册:12.2 三角形全等的判定 同步练习  解析版02
    2020年《暑假衔接》人教版八年级上册:12.2 三角形全等的判定 同步练习  解析版03
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册12.2 三角形全等的判定课后作业题

    展开
    这是一份人教版八年级上册12.2 三角形全等的判定课后作业题,共11页。试卷主要包含了2 三角形全等的判定 同步练习,5cm,则BD=等内容,欢迎下载使用。

    12.2 三角形全等的判定 同步练习


    一.选择题(共10小题)


    1.如图所示,已知AB∥CD且AB=CD,AD∥BC,那么图中共有全等三角形( )





    A.8对B.4对C.2对D.1对


    2.下列说法中错误的是( )


    A.有两个角及它们的夹边对应相等的两个三角形全等


    B.有两个角及其中一个角的对边对应相等的两个三角形全等


    C.有两条边及它们的夹角对应相等的两个三角形全等


    D.有两条边及其中一条边的对角对应相等的两个三角形全等


    3.下列条件中,能判定△ABC≌△DEF的是( )


    A.∠A=∠D,∠B=∠E,∠C=∠F


    B.AB=DE,∠B=∠E,AC=DF


    C.∠A=∠D,∠B=∠E,AC=DE


    D.AB=DE,∠B=∠E=90°,AC=DF


    4.如图,已知∠1=∠4,添加以下条件,不能判定△ABC≌△CDA的是( )





    A.∠2=∠3B.∠B=∠DC.BC=DAD.AB=DC


    5.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是( )





    A.HLB.SASC.ASAD.SSS


    6.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为( )





    A.4cmB.5cmC.6cmD.7cm


    7.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )





    A.带其中的任意两块去都可以


    B.带1、2或2、3去就可以了


    C.带1、4或3、4去就可以了


    D.带1、4或2、4或3、4去均可


    8.如图,已知AB∥CF,E为DF的中点.若AB=12cm,CF=7cm,FE=4.5cm,则BD=( )





    A.5cmB.6cmC.7cmD.4.5cm


    9.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是( )


    A.1B.2C.3D.4


    10.已知:如图,在△ABC中,∠C=63°,AD是BC边上的高,AD=BD,点E在AC上,BE交AD于点F,BF=AC,则∠AFB的度数为( )





    A.27°B.37°C.63°D.117°


    二.填空题(共6小题)


    11.两个三角形全等的判定方法有 , , , (用字母表示).


    12.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是 .(只填一个即可)





    13.两个锐角分别相等的直角三角形 全等.(填“一定”或“不一定”或“一定不”)


    14.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段 即可.





    15.如图,∠B=∠C=90°,AB=AC,∠ADB=65°,则∠DAC的度数为 °.





    16.如图,在△ABC中,有AB=5,AC=7.点D为边BC的中点.则AD的取值范围是 .





    三.解答题(共4小题)


    17.如图,AC平分∠BAD,AB=AD.求证:BC=DC.











    18.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.











    19.如图,在△ABC中,AB=AC,D为BC的中点,E,F分别为AB,AC上的点,且AE=AF.


    (1)求证:△BED≌△CFD.


    (2)若∠AED=∠EDF=80°,求∠C的度数.











    20.已知:如图,△ABC,BD⊥AC,CE⊥AB,BD=CE,BD与CE交于点F.


    (1)说明AB=AC的理由;


    (2)联结AF并延长交BC于G,说明AG⊥BC的理由.










































































    参考答案


    一.选择题(共10小题)


    1.解:全等三角形有△ABD≌△CDB,△ACD≌△CAB,△AOD≌△COB,△AOB≌△COD,共4对,


    故选:B.


    2.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;


    B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;


    C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;


    D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;


    故选:D.


    3.解:∵AB=DE,∠B=∠E=90°,AC=DF,∴Rt△ABC≌Rt△DEF(HL),


    故选:D.


    4.解:A、∵在△ABC和△CDA中,,


    ∴△ABC≌△CDA(ASA),故本选项不符合题意;


    B、∵在△ABC和△CDA中,,


    ∴△ABC≌△CDA(AAS),故本选项不符合题意;


    C、∵在△ABC和△CDA中,,


    ∴△ABC≌△CDA(SAS),故本选项不符合题意;


    D、根据AB=AC,AC=AC和∠1=∠4不能推出△ABC≌△CDA,故本选项符合题意;


    故选:D.


    5.解:在Rt△AOB和Rt△COD中,,


    ∴Rt△AOB≌Rt△COD(HL),


    则如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是HL,


    故选:A.


    6.解:∵DE⊥AB于D,


    ∴∠BDE=90°,


    在Rt△BDE和Rt△BCE中,,


    ∴Rt△BDE≌Rt△BCE(HL),


    ∴ED=CE,∴AE+ED=AE+CE=AC=6cm,


    故选:C.


    7.解:带③、④可以用“角边角”确定三角形,


    带①、④可以用“角边角”确定三角形,


    带②④可以延长还原出原三角形,


    故选:D.


    8.解:∵AB∥CF,


    ∴∠ADE=∠EFC,


    ∵E为DF的中点,∴DE=FE,


    在△ADE和△CFE中,,


    ∴△ADE≌△CFE(ASA),


    ∴AD=CF=7cm,


    ∵AB=12cm,


    ∴BD=AB﹣AD=5cm.


    故选:A.


    9.解:①一个底角和一条边分别相等的两个等腰三角形不一定全等;


    ②底边及底边上的高分别相等的两个等腰三角形全等,正确;


    ③两边分别相等的两个直角三角形不一定全等;


    ④如果在两个直角三角形中,例如:两个30°角的直角三角形,一个三角形的直角边与另一个三角形的斜边相等,这两个直角三角形肯定不全等,错误;


    故选:A.


    10.解:∵AD是BC边上的高,AD=BD,


    ∴∠BAD=∠ABD=45°,


    ∴∠CAD=180°﹣∠C﹣∠BAD﹣∠ABD=180°﹣63°﹣45°﹣45°=27°,


    在Rt△ACD和Rt△BFD中,,


    ∴Rt△ACD≌Rt△BFD(HL),


    ∴∠FBD=∠CAD=27°,


    ∴∠AFB=∠FBD+∠BDF=27°+90°=117°,


    故选:D.


    二.填空题(共6小题)


    11.解:全等三角形的判定定理有SAS,ASA,AAS,SSS.


    故答案为:SAS,ASA,AAS,SSS.


    12.解:∵∠DAB=∠CAB,AB=AB,


    ∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;


    当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;


    当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.


    故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).


    13.解:当还有一条边对应相等时,两直角三角形全等;当三角形的边不相等时,两直角三角形不全等;即两个锐角分别相等的直角三角形不一定全等,


    故答案为:不一定.


    14.解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,


    故想知道两点A,B的距离,只需要测量出线段DE即可.


    故答案为:DE.


    15.解:∵∠B=∠C=90°,AB=AC,


    在Rt△ABD与Rt△ACD中,,


    ∴Rt△ABD≌Rt△ACD(HL),


    ∴∠ADC=∠ADB=65°,


    ∴∠DAC=90°﹣65°=25°,


    故答案为:25.


    16.解:如图,延长AD到E,使DE=AD,连接BE,





    ∵点D为边BC的中点,


    ∴BD=CD,且AD=DE,∠ADC=∠BDE,


    ∴△BDE≌△CDA(SAS)


    ∴BE=AC=7,


    在△ABE中,BE﹣AB<AE<BE+AB,


    ∴7﹣5<2AD<5+7,


    ∴1<AD<6,


    故答案为:1<AD<6.


    三.解答题(共4小题)


    17.证明:∵AC平分∠BAD,


    ∴∠BAC=∠DAC,


    又∵AB=AD,AC=AC,


    ∴△ABC≌△ADC(SAS),


    ∴BC=CD.


    18.证明:∵AB⊥BD,ED⊥BD,AC⊥CE,


    ∴∠ACE=∠ABC=∠CDE=90°,


    ∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,


    ∴∠ACB=∠CED.


    在△ABC和△CDE中,,


    ∴△ABC≌△CDE(ASA),


    ∴AB=CD.


    19.证明:(1)∵AB=AC,


    ∴∠B=∠C,


    ∵AE=AF,


    ∴AB﹣AE=AC﹣AF,


    ∴BE=CF,


    ∵D为BC的中点,


    ∴BD=CD,


    ∴△BED≌△CFD(SAS);


    (2)∵△BED≌△CFD,


    ∴∠BDE=∠CDF,


    ∵∠AED=∠EDF=80°,


    ∴∠BDE=∠CDF=50°,


    ∵∠AED=∠B+∠BDE=80°,


    ∴∠B=30°=∠C.


    20.解:(1)∵BD⊥AC,CE⊥AB,


    ∴∠ADB=∠AEC=90°,


    ∵BD=CE,∠A=∠A,


    ∴△ABD≌△ACE(AAS)


    ∴AB=AC;


    (2)∵AB=AC,


    ∴∠ABC=∠ACB,


    ∵△ABD≌△ACE,


    ∴∠ABD=∠ACE,


    ∴∠FBC=∠FCB,


    ∴FB=FC,


    在△ABF和△ACF中,,


    ∴△ABF≌△ACF(SSS)


    ∴∠BAF=∠CAF,


    ∵AB=AC,


    ∴AG⊥BC.








    相关试卷

    初中数学人教版八年级上册12.2 三角形全等的判定巩固练习: 这是一份初中数学人教版八年级上册12.2 三角形全等的判定巩固练习,共5页。试卷主要包含了2三角形全等的判定 同步练习等内容,欢迎下载使用。

    数学八年级上册第十二章 全等三角形12.2 三角形全等的判定习题: 这是一份数学八年级上册第十二章 全等三角形12.2 三角形全等的判定习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中人教版第十二章 全等三角形12.2 三角形全等的判定同步练习题: 这是一份初中人教版第十二章 全等三角形12.2 三角形全等的判定同步练习题,共5页。试卷主要包含了2三角形全等的判定等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map