资料中包含下列文件,点击文件名可预览资料内容
还剩4页未读,
继续阅读
第2讲 随机变量及其分布(知识点串讲)(复习讲义)
展开
第2讲 随机变量及其分布
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则下表称为离散型随机变量X的概率分布列.
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
(2)离散型随机变量的分布列的性质:
①pi≥0(i=1,2,…,n);②p1+p2+p3+…+pn=1.
例1.(2019·山东济宁检测)已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2
【答案】 [∵P(X=k)=,k=1,2,…,∴P(2
练习. (2019·山东滨州模拟)为了解甲、乙两厂的产品质量,采用分层抽样的方法,从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:mg),下表是乙厂的5件产品测量数据.
编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
70
81
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中微量元素x,y满足x≥175,y≥75时,该产品为优质品,试估计乙厂生产的优质品的数量;
(3)从乙厂抽出的上述5件产品中任取3件,求抽取的3件产品中优质品数ξ的分布列.
解 (1)设乙厂生产的产品为m件,依题意得=,
∴m=35.
(2)∵上述样本数据中满足x≥175且y≥75的只有2件,
∴估计乙厂生产的优质品为35×=14(件).
(3)依题意,ξ可取0,1,2,
则P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==.
∴ξ的分布列为:
ξ
0
1
2
P
3.常见离散型随机变量的分布列
(1)两点分布:若随机变量X服从两点分布,其分布列为
X
0
1
P
1-p
p
其中p=P(X=1)称为成功概率.
(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.
X
0
1
…
m
P
…
例2. (2019年岳麓区月考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列.
解 (1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.
(2)X的所有可能值为0,1,2,且
P(X=0)==,P(X=1)==,
P(X=2)==.
综上知,X的分布列为
X
1
2
3
P
[变式探究1] 在本例条件下,求至少有一个豆沙粽的概率.
解 由题意知,至少有一个豆沙粽的概率
P=P(X≥1)=P(X=1)+P(X=2)=+=.
[变式探究2] 若本例中的X表示取到的粽子的种类,求X的分布列.
解 由题意知X的所有可能值为1,2,3,且
P(X=1)===,
P(X=3)===,
P(X=2)=1-P(X=1)-P(X=3)
=1--=.
综上可知,X的分布列为
X
1
2
3
P
练习.(2019·辽宁大连月考)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为____________.
【答案】 [由题意知取出的3个球必为2个旧球、1个新球,故P(X=4)==.]
4.条件概率
(1)定义:设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生条件下,事件B发生的条件概率.
(2)性质
①0≤P(B|A)≤1;
②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
③条件概率的求法
1)定义法:先求P(A)和P(AB),再由P(B|A)=求P(B|A).
2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=.
例3.(2019·山东济南模拟)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
A. B.
C. D.
【答案】B [P(A)==,P(B)==,又A⊇B,则P(AB)=P(B)=,所以P(B|A)===.]
[变式探究1] 若将题中的事件B:“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?
解 P(A)==,P(B)==,
又A⊇B,则P(AB)=P(B)=,
所以P(B|A)===.
[变式探究2] 将题改为:从1,2,3,4,5中不放回地依次取2个数,事件A为“第一次取到的是奇数”,事件B为“第二次取到的是奇数”,求P(B|A)的值.
解 从1,2,3,4,5中不放回地依次取2个数,有A种方法;其中第一次取到的是奇数,有AA种方法;第一次取到的是奇数且第二次取到的是奇数,有AA种方法.则P(A)==,P(AB)==,
∴P(B|A)===.
练习.(2019· 辽宁大连质检)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )
A. B.
C. D.
【答案】C [设从1号箱取到红球为事件A,从2号箱取到红球为事件B.由题意,P(A)==,P(B|A)==,所以P(AB)=P(B|A)·P(A)=×=,所以两次都取到红球的概率为.]
5.事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)·P(B),则称事件A与事件B相互独立.
(2)性质
①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A),P(AB)=P(A)P(B).
②如果事件A与B相互独立,那么A与,与B,与也都相互独立.
6. 求相互独立事件同时发生的概率的方法
(1)首先判断几个事件的发生是否相互独立.
(2)求相互独立事件同时发生的概率的方法主要有:
①利用相互独立事件的概率乘法公式直接求解;
②正面计算较繁或难以入手时,可从其对立事件入手计算.
例4. (2019·云贵川三省联考)某地乒乓球队备战全运会的热身赛暨选拔赛中,种子选手M与B1,B2,B3三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,M获胜的概率分别为,,,且各场比赛互不影响.
(1)若M至少获胜两场的概率大于,则M入选征战全运会的最终大名单,否则不予入选,问M是否会入选最终的大名单?
(2)求M获胜场数X的分布列和数学期望.
解 (1)记M与B1,B2,B3进行对抗赛获胜的事件分别为A,B,C,M至少获胜两场的事件为D,则P(A)=,P(B)=,P(C)=,由于事件A,B,C相互独立,所以
P(D)=P(ABC)+P(AB)+P(AC)+P(BC)
=××+××+××+××=,由于>,所以M会入选最终的大名单.
(2)M获胜场数X的可能取值为0,1,2,3,则
P(X=0)=P( )
=××=;
P(X=1)=P(A )+P( C)+P(B)=××+××+××==;
P(X=2)=P(AB)+P(AC)+P(BC)
=××+××+××=;
P(X=3)=P(ABC)=××==,所以M获胜场数X的分布列为:
X
0
1
2
3
P
数学期望为E(X)=0×+1×+2×+3×=.
练习. (2019·山东沂水模拟)甲、乙、丙3位大学生同时应聘某个用人单位的职位,3人能被选中的概率分别为,,,且各自能否被选中互不影响.
(1)求3人同时被选中的概率;
(2)求3人中至少有1人被选中的概率.
解 记甲、乙、丙能被选中的事件分别为A,B,C,则P(A)=,P(B)=,P(C)=.
(1)3人同时被选中的概率
P1=P(ABC)=P(A)P(B)P(C)=××=.
(2)法一:3人中有2人被选中的概率
P2=P(AB∪AC∪BC)
=××+××+××=.
3人中只有1人被选中的概率
P3=P(A ∪B∪ C)=××+××+××=.
故3人中至少有1人被选中的概率为P1+P2+P3=++=.
法二:3人都未被选中的概率为
P( )==,
所以3人中至少有一人被选中的概率为1-=.
7.独立重复试验与二项分布
(1)独立重复试验
在相同条件下重复做的n次试验称为n次独立重复试验.Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An).
(2)二项分布
在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率是p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n).
例5.(全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A.0.648 B.0.432
C.0.36 D.0.312
【答案】A [3次投篮投中2次的概率为P(k=2)=C×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C×0.62×(1-0.6)+0.63=0.648.]
练习. (2019·山东济南模拟)某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.
(1)求这次铅球测试成绩合格的人数;
(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.
解 (1)由直方图,知成绩在[9.9,11.4)的频率为
1-(0.05+0.22+0.30+0.03)×1.5=0.1.
因为成绩在[9.9,11.4)的频数是4,
故抽取的总人数为=40.
又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.
(2)ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为,成绩不合格的概率为
1-=,可判断ξ~B.
P(ξ=0)=C×2=,
P(ξ=1)=C××=,
P(ξ=2)=C×2=,
故所求分布列为
X
0
1
2
P
8.均值
(1)一般地,若离散型随机变量X的分布列为:
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
(2)若Y=aX+b,其中a,b为常数,则Y也是随机变量,且E(aX+b)=aE(X)+b.
(3)①若X服从两点分布,则E(X)=p;
②若X~B(n,p),则E(X)=np.
9.方差
(1)设离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则(xi-E(X))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏离程度.而D(X)=(xi-E(X))2pi为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,并称其算术平方根为随机变量X的标准差.
(2)D(aX+b)=a2D(X).
(3)若X服从两点分布,则D(X)=p(1-p).
(4)若X~B(n,p),则D(X)=np(1-p).
例6.(2019·江西上饶月考)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=____________.
【答案】 [由于X~B(n,p),且E(X)=30,D(X)=20,
所以解之得p=.]
练习. (2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0 (1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;
②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
解 (1)20件产品中恰有2件不合格品的概率为f(p)=Cp2·(1-p)18.
因此f′(p)=C[2p(1-p)18-18p2(1-p)17]=2Cp(1-p)17(1-10p).
令f′(p)=0,得p=0.1.
当p∈(0,0.1)时,f′(p)>0;
当p∈(0.1,1)时,f′(p)<0.
所以f(p)的最大值点为p0=0.1.
(2)由(1)知,p=0.1.
①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.
所以EX=E(40+25Y)=40+25EY=490.
②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.
由于EX>400,故应该对余下的产品作检验.
10.正态分布
(1)正态曲线的特点
①曲线位于x轴上方,与x轴不相交;
②曲线是单峰的,它关于直线x=μ对称;
③曲线在x=μ处达到峰值;
④曲线与x轴之间的面积为1;
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;
⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.
(2)正态分布的三个常用数据
①P(μ-σ<X≤μ+σ)=0.6826;
②P(μ-2σ<X≤μ+2σ)=0.9544;
③P(μ-3σ<X≤μ+3σ)=0.9974.
例7.(2019·山东泰安调研)已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为( )
A. B.
C.1-a D.
【答案】A [根据正态分布可知P(|X|<2)+2P(X>2)=1,故P(X>2)=.]
练习.(2019·山东德州模拟)已知某公司生产的一种产品的质量X(单位:克)服从正态分布N(100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )
(附:若X服从N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 7,P(μ-2σ<X<μ+2σ)=0.954 5)
A.4 093件 B.4 772件
C.6 827件 D.8 186件
【答案】 D [由题意可得,该正态分布的对称轴为x=100,且σ=2,则质量在[96,104]内的产品的概率为P(μ-2σ<X<μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P(μ-σ<X<μ+σ)=0.682 7,结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+=0.818 6,据此估计质量在[98,104]内的产品的数量为10 000×0.818 6=8 186(件).]
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则下表称为离散型随机变量X的概率分布列.
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
(2)离散型随机变量的分布列的性质:
①pi≥0(i=1,2,…,n);②p1+p2+p3+…+pn=1.
例1.(2019·山东济宁检测)已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2
编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
70
81
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中微量元素x,y满足x≥175,y≥75时,该产品为优质品,试估计乙厂生产的优质品的数量;
(3)从乙厂抽出的上述5件产品中任取3件,求抽取的3件产品中优质品数ξ的分布列.
解 (1)设乙厂生产的产品为m件,依题意得=,
∴m=35.
(2)∵上述样本数据中满足x≥175且y≥75的只有2件,
∴估计乙厂生产的优质品为35×=14(件).
(3)依题意,ξ可取0,1,2,
则P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==.
∴ξ的分布列为:
ξ
0
1
2
P
3.常见离散型随机变量的分布列
(1)两点分布:若随机变量X服从两点分布,其分布列为
X
0
1
P
1-p
p
其中p=P(X=1)称为成功概率.
(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.
X
0
1
…
m
P
…
例2. (2019年岳麓区月考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列.
解 (1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.
(2)X的所有可能值为0,1,2,且
P(X=0)==,P(X=1)==,
P(X=2)==.
综上知,X的分布列为
X
1
2
3
P
[变式探究1] 在本例条件下,求至少有一个豆沙粽的概率.
解 由题意知,至少有一个豆沙粽的概率
P=P(X≥1)=P(X=1)+P(X=2)=+=.
[变式探究2] 若本例中的X表示取到的粽子的种类,求X的分布列.
解 由题意知X的所有可能值为1,2,3,且
P(X=1)===,
P(X=3)===,
P(X=2)=1-P(X=1)-P(X=3)
=1--=.
综上可知,X的分布列为
X
1
2
3
P
练习.(2019·辽宁大连月考)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为____________.
【答案】 [由题意知取出的3个球必为2个旧球、1个新球,故P(X=4)==.]
4.条件概率
(1)定义:设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生条件下,事件B发生的条件概率.
(2)性质
①0≤P(B|A)≤1;
②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
③条件概率的求法
1)定义法:先求P(A)和P(AB),再由P(B|A)=求P(B|A).
2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=.
例3.(2019·山东济南模拟)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
A. B.
C. D.
【答案】B [P(A)==,P(B)==,又A⊇B,则P(AB)=P(B)=,所以P(B|A)===.]
[变式探究1] 若将题中的事件B:“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?
解 P(A)==,P(B)==,
又A⊇B,则P(AB)=P(B)=,
所以P(B|A)===.
[变式探究2] 将题改为:从1,2,3,4,5中不放回地依次取2个数,事件A为“第一次取到的是奇数”,事件B为“第二次取到的是奇数”,求P(B|A)的值.
解 从1,2,3,4,5中不放回地依次取2个数,有A种方法;其中第一次取到的是奇数,有AA种方法;第一次取到的是奇数且第二次取到的是奇数,有AA种方法.则P(A)==,P(AB)==,
∴P(B|A)===.
练习.(2019· 辽宁大连质检)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )
A. B.
C. D.
【答案】C [设从1号箱取到红球为事件A,从2号箱取到红球为事件B.由题意,P(A)==,P(B|A)==,所以P(AB)=P(B|A)·P(A)=×=,所以两次都取到红球的概率为.]
5.事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)·P(B),则称事件A与事件B相互独立.
(2)性质
①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A),P(AB)=P(A)P(B).
②如果事件A与B相互独立,那么A与,与B,与也都相互独立.
6. 求相互独立事件同时发生的概率的方法
(1)首先判断几个事件的发生是否相互独立.
(2)求相互独立事件同时发生的概率的方法主要有:
①利用相互独立事件的概率乘法公式直接求解;
②正面计算较繁或难以入手时,可从其对立事件入手计算.
例4. (2019·云贵川三省联考)某地乒乓球队备战全运会的热身赛暨选拔赛中,种子选手M与B1,B2,B3三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,M获胜的概率分别为,,,且各场比赛互不影响.
(1)若M至少获胜两场的概率大于,则M入选征战全运会的最终大名单,否则不予入选,问M是否会入选最终的大名单?
(2)求M获胜场数X的分布列和数学期望.
解 (1)记M与B1,B2,B3进行对抗赛获胜的事件分别为A,B,C,M至少获胜两场的事件为D,则P(A)=,P(B)=,P(C)=,由于事件A,B,C相互独立,所以
P(D)=P(ABC)+P(AB)+P(AC)+P(BC)
=××+××+××+××=,由于>,所以M会入选最终的大名单.
(2)M获胜场数X的可能取值为0,1,2,3,则
P(X=0)=P( )
=××=;
P(X=1)=P(A )+P( C)+P(B)=××+××+××==;
P(X=2)=P(AB)+P(AC)+P(BC)
=××+××+××=;
P(X=3)=P(ABC)=××==,所以M获胜场数X的分布列为:
X
0
1
2
3
P
数学期望为E(X)=0×+1×+2×+3×=.
练习. (2019·山东沂水模拟)甲、乙、丙3位大学生同时应聘某个用人单位的职位,3人能被选中的概率分别为,,,且各自能否被选中互不影响.
(1)求3人同时被选中的概率;
(2)求3人中至少有1人被选中的概率.
解 记甲、乙、丙能被选中的事件分别为A,B,C,则P(A)=,P(B)=,P(C)=.
(1)3人同时被选中的概率
P1=P(ABC)=P(A)P(B)P(C)=××=.
(2)法一:3人中有2人被选中的概率
P2=P(AB∪AC∪BC)
=××+××+××=.
3人中只有1人被选中的概率
P3=P(A ∪B∪ C)=××+××+××=.
故3人中至少有1人被选中的概率为P1+P2+P3=++=.
法二:3人都未被选中的概率为
P( )==,
所以3人中至少有一人被选中的概率为1-=.
7.独立重复试验与二项分布
(1)独立重复试验
在相同条件下重复做的n次试验称为n次独立重复试验.Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An).
(2)二项分布
在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率是p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n).
例5.(全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A.0.648 B.0.432
C.0.36 D.0.312
【答案】A [3次投篮投中2次的概率为P(k=2)=C×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C×0.62×(1-0.6)+0.63=0.648.]
练习. (2019·山东济南模拟)某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.
(1)求这次铅球测试成绩合格的人数;
(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.
解 (1)由直方图,知成绩在[9.9,11.4)的频率为
1-(0.05+0.22+0.30+0.03)×1.5=0.1.
因为成绩在[9.9,11.4)的频数是4,
故抽取的总人数为=40.
又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.
(2)ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为,成绩不合格的概率为
1-=,可判断ξ~B.
P(ξ=0)=C×2=,
P(ξ=1)=C××=,
P(ξ=2)=C×2=,
故所求分布列为
X
0
1
2
P
8.均值
(1)一般地,若离散型随机变量X的分布列为:
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
(2)若Y=aX+b,其中a,b为常数,则Y也是随机变量,且E(aX+b)=aE(X)+b.
(3)①若X服从两点分布,则E(X)=p;
②若X~B(n,p),则E(X)=np.
9.方差
(1)设离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则(xi-E(X))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏离程度.而D(X)=(xi-E(X))2pi为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,并称其算术平方根为随机变量X的标准差.
(2)D(aX+b)=a2D(X).
(3)若X服从两点分布,则D(X)=p(1-p).
(4)若X~B(n,p),则D(X)=np(1-p).
例6.(2019·江西上饶月考)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=____________.
【答案】 [由于X~B(n,p),且E(X)=30,D(X)=20,
所以解之得p=.]
练习. (2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0 (1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;
②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
解 (1)20件产品中恰有2件不合格品的概率为f(p)=Cp2·(1-p)18.
因此f′(p)=C[2p(1-p)18-18p2(1-p)17]=2Cp(1-p)17(1-10p).
令f′(p)=0,得p=0.1.
当p∈(0,0.1)时,f′(p)>0;
当p∈(0.1,1)时,f′(p)<0.
所以f(p)的最大值点为p0=0.1.
(2)由(1)知,p=0.1.
①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.
所以EX=E(40+25Y)=40+25EY=490.
②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.
由于EX>400,故应该对余下的产品作检验.
10.正态分布
(1)正态曲线的特点
①曲线位于x轴上方,与x轴不相交;
②曲线是单峰的,它关于直线x=μ对称;
③曲线在x=μ处达到峰值;
④曲线与x轴之间的面积为1;
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;
⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.
(2)正态分布的三个常用数据
①P(μ-σ<X≤μ+σ)=0.6826;
②P(μ-2σ<X≤μ+2σ)=0.9544;
③P(μ-3σ<X≤μ+3σ)=0.9974.
例7.(2019·山东泰安调研)已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为( )
A. B.
C.1-a D.
【答案】A [根据正态分布可知P(|X|<2)+2P(X>2)=1,故P(X>2)=.]
练习.(2019·山东德州模拟)已知某公司生产的一种产品的质量X(单位:克)服从正态分布N(100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )
(附:若X服从N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 7,P(μ-2σ<X<μ+2σ)=0.954 5)
A.4 093件 B.4 772件
C.6 827件 D.8 186件
【答案】 D [由题意可得,该正态分布的对称轴为x=100,且σ=2,则质量在[96,104]内的产品的概率为P(μ-2σ<X<μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P(μ-σ<X<μ+σ)=0.682 7,结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+=0.818 6,据此估计质量在[98,104]内的产品的数量为10 000×0.818 6=8 186(件).]
相关资料
更多