













所属成套资源:新教材(人教A版2019)高中数学选择性必修第一册 同步教学课件+同步练习
- 1.1 空间向量及其运算(第1课时)- 高二数学 同步教学课件+同步练习(人教版A版2019 选择性必修第一册) 课件 0 次下载
- 1.1 空间向量及其运算(第2课时)- 高二数学 同步教学课件+同步练习(人教版A版2019 选择性必修第一册) 课件 0 次下载
- 1.3 空间向量及其运算的坐标表示- 高二数学 同步教学课件+同步练习(人教版A版2019 选择性必修第一册) 课件 0 次下载
- 1.4 空间向量的应用(第1课时)- 高二数学 同步教学课件+同步练习(人教版A版2019 选择性必修第一册) 课件 0 次下载
- 1.4 空间向量的应用(第2课时)- 高二数学 同步教学课件+同步练习(人教版A版2019 选择性必修第一册) 课件 0 次下载
人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理精品教学课件ppt
展开
这是一份人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理精品教学课件ppt,文件包含课文3我多想去看看pptx、课文3我多想去看看教学设计docx、3我wǒ多duō想xiǎnɡ去qù看kàn看kanmp3、天安门广场升旗mp4、新疆介绍mp4、某小学升旗mp4等6份课件配套教学资源,其中PPT共41页, 欢迎下载使用。
1、了解空间向量基本定理及其意义;2、掌握空间向量的正交分解;3、会在简单问题中选用空间三个不共面向量作基底表示其他的向量;4、会用空间向量基本定理证明平行、垂直问题和求夹角5、通过本节学习,提升直观想象、数学运算、逻辑推理素养.
重点:空间向量基本定理难点:选择恰当的基底表示向量
回顾:平面向量基本定理的内容是什么?
猜想:任意一个空间向量都可以由三个不共面的向量来表示.
思考1:你能证明唯一性吗?
又由思考1的方法可证明唯一性
思考:零向量可以作为基向量吗?
思考:构成空间向量的基底唯一吗?
若三个向量中存在一个向量可用另外两个表示,则三向量共面,不能做基底.
假设三向量共面,建立x,y的方程组,若有解,则不可作基底;若无解,则可作基底.
例1:四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA=2,且PA与AB,AD的夹角均为60°,点M是PC的中点,求BM的长.
应用2——证明垂直、平行
注意:直线所成角范围与向量所成角范围
8、已知四面体中三组相对棱的中点间的距离都相等,求证:这个四面体的相对的棱两两垂直。
②四面体中的3组对棱中有2组两两垂直,则另一组对棱也互相垂直.
③四面体中3组对棱的中点间的距离相等,则这3组对棱两两垂直.
①正四面体的3组对棱两两垂直.
零向量不可以作为基向量
构成空间向量的基底不唯一
基底的构建:常依托正方体、长方体、平行六面体、四面体等几何体,用从同一顶点出发的三条棱对应的向量为基底,并尽量选已知夹角和长度的向量.
基底的运用:用基底法解决立体几何中的垂直、共线、角度、模长等问题.
相关课件
这是一份人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理备课课件ppt,共42页。PPT课件主要包含了学习目标等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理备课课件ppt,共42页。PPT课件主要包含了学习目标等内容,欢迎下载使用。
这是一份数学选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理备课课件ppt,共43页。PPT课件主要包含了学习目标,THANKS等内容,欢迎下载使用。