所属成套资源:【高考二轮】2025年高考数学二轮复习课件+练习
2025届高中数学二轮复习 提优点1 隐零点问题(课件+练习)
展开
这是一份2025届高中数学二轮复习 提优点1 隐零点问题(课件+练习),文件包含提优点1隐零点问题pptx、提优点1隐零点问题docx等2份课件配套教学资源,其中PPT共25页, 欢迎下载使用。
导函数的零点在很多时候是无法直接求解出来的,我们称之为“隐零点”,即能确定其存在,但又无法用显性的代数进行表达.这类问题的解题思路是对函数的零点设而不求,利用整体代换思想,再结合题目条件解决问题.
类型一 不含参函数的隐零点问题
类型二 含参函数的隐零点问题
(2024·长沙调研节选)已知函数f(x)=xln x-mx(m∈R).当x>1时,不等式f(x)+ln x+3>0恒成立,求整数m的最大值.
已知不含参函数f(x),导函数方程f′(x)=0的根存在,却无法求出,利用零点存在定理判断零点存在,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,②注意确定x0的范围.
(2024·济南模拟)已知函数f(x)=ln x-ax+1,g(x)=x(ex-x).(1)若直线y=2x与函数f(x)的图象相切,求实数a的值;
(2)当a=-1时,求证:f(x)≤g(x)+x2.
且当x∈(0,x0)时,G(x)0.所以函数F(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,故F(x)min=F(x0)=x0ex0-ln x0-x0-1,由G(x0)=0得x0ex0=1,两边取对数得ln x0+x0=0,故F(x0)=0,所以g(x)-f(x)+x2≥0,即f(x)≤g(x)+x2.
又∵f(π)=-aπ
相关课件
这是一份新高考数学二轮复习课件 专题突破 专题1 培优点3 隐零点问题,共37页。PPT课件主要包含了内容索引,考点一,规律方法,含参函数的隐零点问题,考点二,专题强化练,2fxπ等内容,欢迎下载使用。
这是一份专题一 培优点2 隐零点问题--高三高考数学复习-PPT,共44页。PPT课件主要包含了内容索引,考点一,考点二,含参函数的隐零点问题,专题强化练,规律方法等内容,欢迎下载使用。
这是一份专题一 培优点2 隐零点问题 2024年高考数学大二轮复习课件(含讲义),文件包含专题一培优点2隐零点问题pptx、专题一培优点2隐零点问题教师版docx、专题一培优点2隐零点问题docx等3份课件配套教学资源,其中PPT共44页, 欢迎下载使用。