人教版(2024)九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质教学课件ppt
展开
这是一份人教版(2024)九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质教学课件ppt,共32页。PPT课件主要包含了0-1,x-1,0-3,如何由,的图象得到,的图象,上下平移,x-2,左右平移,yax2等内容,欢迎下载使用。
复习二次函数y=ax2的性质
顶点坐标是原点(0,0)
在对称轴左侧,y随x的增大而减小在对称轴右侧,y随x的增大而增大
在对称轴左侧,y随x的增大而增大 在对称轴右侧,y随x的增大而减小
复习二次函数y=ax2+k的性质
a的绝对值越大,开口越小
关于y轴 (x=)对称
复习二次函数y=a(x-h)2的性质
说出平移方式,并指出其顶点与对称轴。
例3.画出函数 的图像.指出它的开口方向、顶点与对称轴、
抛物线 的开口向下,
对称轴是直线x=-1,
顶点是(-1, -1).
形状相同,开口方向相同.
顶点不同,对称轴不同.
再向右平移一个单位,或者先向右平移一个单位再向上平移一个单位而得到.
(如何平移,主要看平移前后两条抛物线的顶点就可确定。)
:一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)向右(左)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.(如何平移,主要看平移前后两条抛物线的顶点就可确定。)
向左(右)平移|h|个单位
向上(下)平移|k|个单位
y=a(x-h)2+k
y = ax2 + k
y = a(x - h )2
y = a( x - h )2 + k
结论: 一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同。
各种形式的二次函数的关系
二次函数y=a(x-h)2+k的图象和性质
y=a(x-h)2+k(a>0)
y=a(x-h)2+k(a0;当x=_____时,y有最大值_____.
小结1:二次函数y=a(x-h)2+k的图象和性质
小结2:一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)向右(左)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.(如何平移,主要看平移前后两条抛物线的顶点就可确定。)
11、试分别说明将抛物线的图象通过怎样的平移得到y=x2的图象: (1) y=(x-3)2+2 ; (2)y=(x+4)2-5
12.与抛物线y=-4x 2形状相同,顶点为(2,-3)的抛物线解析式为 .
先向左平移3个单位,再向下平移2个单位
先向右平移4个单位,再向上平移5个单位
y= - 4(x-2)2-3或y= 4(x-2)2-3
13.已知二次函数y=ax2+bx+c的图象如图所示(1)求解析式
当x 时,y﹤0。
当x 时,y=0;
(2)根据图象回答: 当x 时,y>0;
解:∵二次函数图象的顶点是(1,-1),∴设抛物线解析式是y=a(x-1)2-1,∵其图象过点(0,0),∴0= a(0-1)2-1,∴a=1∴y= (x-1)2-1
相关课件
这是一份人教版九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质授课课件ppt,共12页。PPT课件主要包含了学习目标,yax2,基础巩固,综合应用等内容,欢迎下载使用。
这是一份数学九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质授课ppt课件,共19页。PPT课件主要包含了y=x2+1,y=x2-1,y=x2,抛物线,0-1,y=0,y=-1,y=1,-10,a<0等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质作业课件ppt,