所属成套资源:【新课标专题训练】北师大版数学九年级下册同步课件+考点专题训练
北师大版(2024)九年级下册第三章 圆7 切线长定理优秀ppt课件
展开
这是一份北师大版(2024)九年级下册第三章 圆7 切线长定理优秀ppt课件,文件包含专题36切线的判定与性质十大题型练习北师大版原卷版docx、专题36切线的判定与性质十大题型练习北师大版解析版docx等2份课件配套教学资源,其中PPT共0页, 欢迎下载使用。
专题3.6 切线的判定与性质【十大题型】【北师大版】TOC \o "1-3" \h \u HYPERLINK \l "_Toc238" 【题型1 添加条件使直线为切线】 PAGEREF _Toc238 \h 2 HYPERLINK \l "_Toc2004" 【题型2 连半径证垂直证明是切线】 PAGEREF _Toc2004 \h 5 HYPERLINK \l "_Toc9668" 【题型3 作垂直证半径证明是切线】 PAGEREF _Toc9668 \h 10 HYPERLINK \l "_Toc26104" 【题型4 由切线的性质求线段长度】 PAGEREF _Toc26104 \h 16 HYPERLINK \l "_Toc382" 【题型5 由切线的性质求角度】 PAGEREF _Toc382 \h 21 HYPERLINK \l "_Toc23544" 【题型6 利用切线的性质进行证明】 PAGEREF _Toc23544 \h 25 HYPERLINK \l "_Toc16663" 【题型7 作圆的切线】 PAGEREF _Toc16663 \h 31 HYPERLINK \l "_Toc255" 【题型8 利用切线的判定与性质判断结论正误】 PAGEREF _Toc255 \h 37 HYPERLINK \l "_Toc19627" 【题型9 利用切线的判定与性质进行求值或证明】 PAGEREF _Toc19627 \h 43 HYPERLINK \l "_Toc31727" 【题型10 切线的应用】 PAGEREF _Toc31727 \h 51知识点:切线的判定与性质(1)切线的判定: = 1 \* GB3 ①经过半径的外端并且垂直于这条半径的直线是圆的切线 = 2 \* GB3 ②和圆只有一个公共点的直线是圆的切线(定义法) = 3 \* GB3 ③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.(3)切线的性质:圆的切线垂直于经过切点的半径.【题型1 添加条件使直线为切线】【例1】(23-24九年级·河北衡水·阶段练习)如图,AB是⊙O的直径,C是⊙O上一点,D是⊙O外一点,过点A作AE⊥CD,垂足为E,连接OC.若使CD切⊙O于点C,添加的下列条件中,不正确的是( ) A.OC∥AE B.∠OAC=∠CAE C.∠OCA=∠CAE D.OA=AC【答案】D【分析】本题考查切线的证明,涉及圆的切线的判定、平行线的判定与性质、圆的性质等知识,根据选项,逐项判定即可得到答案,熟记圆的切线的判定是解决问题的关键.【详解】解:A、∵ AE⊥CD,∴∠AED=90°,当OC∥AE时,则∠OCD=90°,即OC⊥DE,根据切线的判定,CD切⊙O于点C,该选项正确,不符合题意;B、∵ AE⊥CD,∴∠AED=90°,则∠CAE+∠ACE=90°,∵OA=OC,∴∠OAC=∠OCA,当∠OAC=∠CAE时,则∠OCA+∠ACE=90°,即OC⊥DE,根据切线的判定,CD切⊙O于点C,该选项正确,不符合题意;C、当∠OCA=∠CAE时,OC∥AE,∵ AE⊥CD,∴∠AED=90°,∴∠OCD=90°,即OC⊥DE,根据切线的判定,CD切⊙O于点C,该选项正确,不符合题意;D、当OA=AC时,由OA=OC得到OA=OC=AC,则△OAC是等腰三角形,无法确定∠OCD=90°,不能得到CD切⊙O于点C,该选项不正确,符合题意;故选:D.【变式1-1】(23-24九年级·全国·课后作业)如图,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,2cm为半径作⊙M,当OM= cm时,⊙M与OA相切.【答案】4【分析】过M作MN⊥OA于点N,此时以MN为半径的圆⊙M与OA相切,根据30°角所对直角边为斜边的一半可得OM的长.【详解】解:如图,过M作MN⊥OA于点N,∵MN=2cm,∠AOB=30°,∴OM=4cm,则当OM=4cm时,⊙M与OA相切.故答案为4.【点睛】本题主要考查切线判定,直角三角形中30°角所对直角边为斜边的一半,解此题的关键在于熟练掌握其知识点.【变式1-2】(23-24九年级·全国·期末)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于 度时,AC才能成为⊙O的切线.【答案】60【分析】由已知可求得∠OAB的度数,因为OA⊥AC,AC才能成为⊙O的切线,从而可求得∠CAB的度数.【详解】解:∵△AOB中,OA=OB,∠AOB=120°,∴∠OAB=∠OBA=12180°-∠AOB=30°,∵当OA⊥AC即∠OAC=90°时,AC才能成为⊙O的切线,∴当∠CAB的度数等于60°,即OA⊥AC时,AC才能成为⊙O的切线.故答案为:60.【点睛】本题考查了切线的判定,三角形内角和定理,等腰三角形的性质,掌握切线的判定定理是解答此题的关键.【变式1-3】(23-24九年级·北京·期末)在下图中,AB是⊙O的直径,要使得直线AT是⊙O的切线,需要添加的一个条件是 .(写一个条件即可)【答案】∠ABT=∠ATB=45°(答案不唯一)【分析】根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.【详解】解:添加条件:∠ABT=∠ATB=45°,∵∠ABT=∠ATB=45°,∴∠BAT=90°,又∵AB是圆O的直径,∴AT是圆O的切线,故答案为:∠ABT=∠ATB=45°(答案不唯一).【点睛】本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.【题型2 连半径证垂直证明是切线】【例2】(2024九年级·江苏·专题练习)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.【答案】(1)见解析(2)103【分析】本题主要考查了切线的判定、同弧所对的圆周角相等、等边对等角、圆周角定理、三角形内角和定理、垂径定理、含30度角的直角三角形的性质、勾股定理等知识,灵活运用知识点推理证明是解题的关键.(1)连接OA,根据同弧所对的圆周角相等得到∠B,由等边对等角得到∠D=∠B,利用圆周角定理得到∠AOC,利用三角形内角和定理,求得∠OAD=90°,即可证明直线AD是⊙O的切线;(2)根据垂径定理得到AM=EM,根据含30度角的直角三角形的性质,得到OM=12OA,根据勾股定理计算AM=OA2-OM2,由AE=2AM,得出答案即可.【详解】(1)证明:如图,连接OA, ∵∠AEC=30°,∴∠B=∠AEC=30°,∠AOC=2∠AEC=60°,∵AB=AD,∴∠D=∠B=30°,∴∠OAD=180°-∠AOC-∠D=180°-60°-30°=90°,∴AD⊥OA,又∵OA是⊙O的半径,∴直线AD是⊙O的切线;(2)解:如图,连接OA, ∵BC是⊙O的直径,AE⊥BC,垂足为M,⊙O的半径为10,∴AM=EM,∠AMO=90°,OA=10,∵∠AEC=30°,∴∠AOM=2∠AEC=60°,∴∠OAM=180°-90°-60°=30°,∴OM=12OA=12×10=5,∴AM=OA2-OM2=102-52=53,∴AE=2AM=2×53=103.【变式2-1】(2024·江苏镇江·中考真题)如图,将△ABC沿过点A的直线翻折并展开,点C的对应点C'落在边AB上,折痕为AD,点O在边AB上,⊙O经过点A、D.若∠ACB=90°,判断BC与⊙O的位置关系,并说明理由.【答案】BC与⊙O相切,理由见解析【分析】连接OD,由等腰三角形的性质得∠OAD=∠ODA,再由折叠的性质得∠CAD=∠OAD,进而证明AC∥OD,则∠ODB=∠ACB=90°,因此OD⊥BC,然后由切线的判定即可得出结论.【详解】解:BC与⊙O相切.证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵图形沿过点A的直线翻折,点C的对应点C'落在边AB上,∴∠CAD=∠OAD.∴∠CAD=∠ODA.∴AC∥OD.∴由∠ACB=90°,得∠ODC=90°,即OD⊥BC.∴BC与⊙O相切.【点睛】本题考查直线与圆的位置关系、等腰三角形的性质、折叠的性质以及平行线的判定与性质等知识,熟练掌握切线的判定和折叠的性质是解题的关键.【变式2-2】(2024·山东青岛·一模)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,D为BC的中点,∠ABE=∠C,E在CA的延长线上.(1)EB是⊙O的切线吗?为什么?(2)若DB=12AC,则∠DBC的度数为______°.【答案】(1)EB是⊙O的切线,理由见解析;(2)30【分析】本题考查切线的判定,等边三角形的判定及性质,圆周角定理,关键是掌握切线的判定方法,圆周角定理.(1)由圆周角定理得到∠C+∠CAB=90°,由等腰三角形的性质得到∠EBA+∠OBA=90°,即可证明问题;(2)连接OD,得到△OBD是等边三角形,得到∠BOD=60°,由D为BC的中点,得到∠COD=∠BOD=60°,由圆周角定理即可求出∠DBC的度数.【详解】(1)解:EB是⊙O的切线,理由如下,连接OB,∵AC是圆的直径,∴∠CBA=90°,∴∠C+∠CAB=90°,∵OB=OA,∴∠OBA=∠OAB,∴∠C+∠OBA=90°,∵∠EBA=∠C,∴∠EBA+∠OBA=90°,∴半径OB⊥BE,∴EB是⊙O的切线;(2)解:连接OD,∵BD=12AC,∴BD=OD=OB,∴△OBD等边三角形,∴∠BOD=60°,∵D为BC的中点,∴∠COD=∠BOD=60°,∴∠DBC=12∠COD=30°.故答案为:30.【变式2-3】(2024·上海青浦·模拟预测)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.【答案】(1)见解析(2)∠AED+∠ACD=90°【分析】本题考查了切线的判定和性质,圆周角定理,平行四边形的判定和性质,正确的作出辅助线是解题的关键.(1)连接OC,根据切线的性质得到AB⊥AD,推出四边形BODC是平行四边形,得到OB=CD,等量代换得到CD=OA,推出四边形ADCO是平行四边形,根据平行四边形的性质得到OC∥AD,于是得到结论;(2)如图2,连接BE,根据圆周角定理得到∠AEB=90°,求得∠EBA+∠BAE=90°,证得∠ABE=∠DAE,等量代换即可得到结论.【详解】(1)证明:连接OC,∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形,∴OB=CD,∵OA=OB,∴CD=OA,∴四边形ADCO是平行四边形,∴OC∥AD,∵CD∥AB,∴CD⊥AD,∵OC∥AD,∴OC⊥CD,∴CD是半圆的切线;(2)解:∠AED+∠ACD=90°,理由:如图2,连接BE,∵AB为半圆的直径,∴∠AEB=90°,∴∠EBA+∠BAE=90°,∵∠DAE+∠BAE=90°,∴∠ABE=∠DAE,∵∠ACE=∠ABE,∴∠ACE=∠DAE,∵∠ADE=90°,∴∠DAE+∠AED=∠AED+∠ACD=90°.【题型3 作垂直证半径证明是切线】【例3】(2024·江苏扬州·中考真题)如图,四边形ABCD中,AD//BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=23,∠BCD=60°,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)23-π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=23,∴AD=DF=AB⋅tan30°=2,∴阴影部分的面积=S△ABD-S扇形ABE=12×23×2-30×π×232360=23-π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.【变式3-1】(23-24九年级·广西防城港·期末)如图,O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与CD相切于点M,(1)求证:BC与⊙O相切;(2)若正方形的边长为1,求⊙O的半径.【答案】(1)证明见解析;(2)2-2.【分析】(1)过O作OH⊥BC于H, 由正方形ABCD,可得∠ACB=∠ACD=45°, 证明OM⊥CD, 再证明OM=OH, 从而可得结论;(2)正方形ABCD,可得∠ACB=∠BAC=45°, 求解AC=AB2+BC2=2, 再证明OH=CH=r, 求解OC=r2+r2=2r, 利用OA+OC=AC, 列方程,解方程可得答案.【详解】解:(1)过O作OH⊥BC于H, ∵ 正方形ABCD,∴∠ACB=∠ACD=45°, ∵CD是⊙O的切线,∴OM⊥CD, ∴OM=OH, ∵OM为⊙O的半径,∴ BC与⊙O相切;(2)∵ 正方形ABCD,∴AB=BC=1,∠B=90°, ∠ACB=∠BAC=45°, ∴AC=AB2+BC2=2, ∵OH⊥BC, 设⊙O的半径为r, ∴∠OHC=∠OCH=45°, ∴OH=CH=r, ∴OC=r2+r2=2r, ∵OA+OC=AC, ∴r+2r=2, ∴r=22+1=2(2-1)=2-2.【点睛】本题考查的是正方形的性质,圆的切线的判定,勾股定理的应用,等腰直角三角形的判定与性质,角平分线的性质,二次根式的运算,掌握以上知识是解题的关键.【变式3-2】(23-24九年级·山西·期末)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【答案】(1)证明见解析;(2)8【分析】(1)过点D作DF⊥AC于F,根据切线的性质可得∠B=90°,即AB⊥BC,然后根据角平分线的性质可得DE=DF,从而证得结论;(2)根据已知DE=DC和(1)的结论可知DF⊥AC,AB⊥BC以及半径DB=DF,得证Rt△BDE≌Rt△DCF(HL),进而得证EB=FC,再由AB=AF,可知AC=AF+FC=AB+EB=8.【详解】解:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°,∴AB⊥BC∵AD平分∠BAC,DF⊥AC,∴BD=DF,∴AC与圆D相切;(2)在△BDE和△DCF中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【点睛】本题考查切线的性质与判定,直角三角形全等的判定与性质.【变式3-3】(23-24九年级·辽宁大连·期末)如图1,△ABC为等腰三角形,O是底边BC的中点,腰AB与□O相切于点D,底BC交⊙O于点E,F.(1)求证:AC是⊙O的切线;(2)如图2,连接AF,DF,AF交⊙O于点G,点D是弧EG的中点,若AD=2,AF=4,求⊙O的半径.【答案】(1)证明见解析;(2)⊙O的半径为2.5.【分析】(1)连接OA,OD,过O作OH⊥AC于点H,根据三线合一可得∠BAO=∠CAO,然后根据角平分线的性质可得OH=OD,然后根据切线的判定定理即可证出结论;(2)连接OD,过D作DK⊥BC于点K,根据平行线的判定证出OD//AF,证出AF⊥AB,根据角平分线的性质可得AD=DK=2,然后利用HL证出Rt△ADF≅Rt△KDF,从而得出FK=AF=4,设⊙O的半径为x,根据勾股定理列出方程即可求出结论.【详解】(1)证明:如图,连接OA,OD,过O作OH⊥AC于点H.∵AB=AC,O是底边BC的中点,∴∠BAO=∠CAO,∵AB是⊙O的切线,∴OD⊥AB,∴OH=OD.∴AC是⊙O的切线;(2)解:如图2,连接OD,过D作DK⊥BC于点K.∵点D是EG的中点,∴∠AFD=∠DFK=∠ODF,∴OD//AF∴AF⊥AB,∴AD=DK=2在Rt△ADF和Rt△KDF中,AD=DKDF=DF∴Rt△ADF≅Rt△KDF∴FK=AF=4设⊙O的半径为x由勾股定理得:DK2+OK2=OD2即22+4-x2=x2,解得:x=2.5.∴□O的半径为2.5.【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键.【题型4 由切线的性质求线段长度】【例4】(23-24九年级·重庆忠县·期中)如图,△ABC是⊙O的内接三角形,∠ACB=67.5°.点D是AO延长线上一点,且BD与⊙O相切于点B,若⊙O的半径为1,则AD长为( )A.1+2 B.1+3 C.1+233 D.3【答案】A【分析】本题主要考查圆与三角形的综合,掌握圆周角定理,切线的性质,互补的性质,勾股定理是解题的关键.如图所示,连接OB,根据圆周角定理可得∠AOB=2∠C=135°,根据补角的性质可得∠BOD=45°,结合题意,BD与⊙O相切于点B,可得∠OBD=90°,OB=BD=OA=1,运用勾股定理即可求解.【详解】解:如图所示,连接OB,∵∠ACB=67.5°,∴∠AOB=2∠C=135°,∴∠BOD=45°,∵BD与⊙O相切于点B,∴∠OBD=90°,∴△OBD是等腰直角三角形,∴OB=BD=OA=1,∴OD=OB2+BD2=2,∴AD=AO+OD=1+2,故选:A.【变式4-1】(2024九年级·江苏·专题练习)如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在PA上,且CB=CA.若OA=5,PA=12,则CA的长为 .【答案】103【分析】本题考查了圆的切线的性质,全等三角形的判定与性质,勾股定理,熟练掌握圆的切线的性质是解题的关键.根据圆的切线的性质可得∠OAP=90°,然后根据全等三角形的判定与性质,可得∠OBC=90°,再根据勾股定理及面积法列方程,即可求解答案.【详解】解:连接OC,∵PA与⊙O相切于点A,∴∠OAP=90°,∵OA=OB,OC=OC,CA=CB,∴△OAC≌△OBC(SSS),∴∠OAP=∠OBC=90°,在Rt△OAP中,OA=5,PA=12,∴OP=OA2+AP2=52+122=13, ∵S△OAC+S△OCP=S△OAP, ∴12OA⋅AC+12OP⋅BC=12OA⋅AP,∴OA⋅AC+OP⋅BC=OA⋅AP,∴5AC+13BC=5×12,∴AC=BC=103.故答案为:103.【变式4-2】(2024九年级·江苏·专题练习)如图,AB是⊙O的直径,AB=4,AC与⊙O相切于点A,OC交⊙O于点D,连接BD,若∠C=30°,则BD的长为( )A.4 B.3 C.2 D.23【答案】D【分析】本题考查了直径所对的圆周角是直角、切线的性质定理、直角三角形的两个锐角互余、等边三角形的判定与性质、勾股定理等知识,正确地作出辅助线是解题的关键.连接AD,由AB是⊙O的直径,AB=4,得∠ADB=90°,OD=OA=12AB=2,由切线的性质得∠OAC=90°,而∠C=30°,所以∠AOD=60°,则△AOD是等边三角形,所以AD=OA=2,由勾股定理得BD=AB2-AD2=42-22=23,于是得到问题的答案.【详解】解:连接AD,∵AB是⊙O的直径,AB=4,∴∠ADB=90°,OD=OA=12AB=2,∵AC与⊙O相切于点A,∴AC⊥AB,∴∠OAC=90°,∵∠C=30°,∴∠AOD=90°-∠C=60°,∴△AOD是等边三角形,∴AD=OA=2,∴BD=AB2-AD2=42-22=23.故选:D.【变式4-3】(2024·海南海口·模拟预测)如图,PA与⊙O相切于点A,PO与弦AB相交于点C,OB⊥OP,若OB=3,OC=1,则PA的长为 .【答案】4【分析】本题考查了切线的性质,等腰三角形的判定和性质,余角性质,对顶角的性质,勾股定义,连接OA,由切线的性质可得∠OAP=90°,由OB⊥OP得∠BOC=90°,又由OA=OB得到∠B=∠OAB,即可根据余角性质得到∠OCB=∠PAC,进而得到∠PCA=∠PAC,即得到PA=PC,设PA=x,则PC=x,PO=x+1,由勾股定理可得32+x2=x+12,据此即可求解,正确作出辅助线是解题的关键.【详解】解:连接OA,如图,∵PA与⊙O相切于点A,∴OA⊥PA,∴∠OAP=90°,∵OB⊥OP,∴∠BOC=90°,∵OA=OB,∴∠B=∠OAB,∵∠B+∠OCB=90°,∠OAB+∠PAC=90°,∴∠OCB=∠PAC,∵∠OCB=∠PCA,∴∠PCA=∠PAC,∴PA=PC,设PA=x,则PC=x,PO=x+1,∵OA=OB=3,∴32+x2=x+12,解得x=4,即PA的长为4,故答案为:4.【题型5 由切线的性质求角度】【例5】(2024·海南海口·模拟预测)如图,在△ABC中,∠B=90°,圆O与AB交于点D,与BC相切于点C,∠BAC=32°,则∠ADO= . 【答案】64°/64度【分析】本题考查圆的切线的性质,圆周角定理、平行线的判定和性质,解题的关键是熟练掌握圆和平行线的相关知识.根据同弧对应的圆心角是圆周角的2倍计算出∠DOC,再根据AB∥OC,内错角∠ADO=∠DOC得到答案.【详解】解:如图所示,连接OC, ∵∠A=32°,∴∠DOC=2∠A=64°.∵BC是圆⊙O的切线∴OC⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥OC, ∴∠ADO=∠DOC=64° 故答案为:64°.【变式5-1】(23-24九年级·重庆九龙坡·开学考试)如图,AB是⊙O的直径,AE⊥EP,垂足为E,直线EP与⊙O相切于点C,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,若∠APC=36°,则∠CAE的度数是( )A.27° B.18° C.30° D.36°【答案】A【分析】连接OC,由切线的性质,可以证明OC∥AE,由平行线的性质、等腰三角形的性质,得到∠EAC=∠CAO=12∠PAE,由∠APC=36°,求出∠PAE的度数,即可得除答案.【详解】解:连接OC,∵EP与⊙O相切于点C,∴半径OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO=12∠PAE,∵∠PAE=90°-∠P=90°-36°=54°,∴∠EAC=12×54°=27°,故选:A.【点睛】本题考查了切线的性质、等腰三角形的性质以及平行线的性质,关键是由条件证明∠EAC=12∠PAE.【变式5-2】(2024九年级·江苏·专题练习)如图,正六边形ABCDEF的边CD,EF与⊙O相切于点C,F,连接OF,CO,则∠COF的度数是( )A.120° B.144° C.150° D.160°【答案】A【分析】本题考查正多边形和圆,切线的性质,掌握正六边形的性质,切线的性质以及多边形内角和的计算方法是正确解答的关键.根据正六边形的性质可求出各个内角的度数,由切线的性质以及五边形内角和的计算方法即可求出答案.【详解】解:∵正六边形ABCDEF的边CD,EF与⊙O相切于点C,F,∴∠OFE=90°=∠OCD,∵六边形ABCDEF是正六边形,∴∠D=∠E=(6-2)×180°6=120°,在五边形OCDEF中,∠COF=(5-2)×180°-90°×2-120°×2=120°,故选:A.【变式5-3】(2024九年级·全国·专题练习)如图PA、PB、CD分别切⊙O于A、B、E,∠APB=54°,则∠COD=( ) A.36° B.63° C.126° D.46°【答案】B【分析】本题考查了切线的性质,三角形全等的判定与性质,四边形的内角和,根据切线的性质证明Rt△AOC≌Rt△EOCHL,Rt△BOD≌Rt△EODHL,得到∠AOC=∠EOC,∠BOD=∠DOE,进而得到∠COD=∠COE+∠DOE=12∠AOB,再根据四边形内角和即可求解.【详解】解:如图,连接OA,OB,OE, ∵PA、PB、CD分别切⊙O于A、B、E,∴∠OAC=∠OEC=∠OED=∠OBD=90°,在Rt△AOC与Rt△EOC中,OA=OEOC=OC,∴Rt△AOC≌Rt△EOCHL,∴∠AOC=∠EOC,同理Rt△BOD≌Rt△EODHL,∴ ∠BOD=∠DOE,∴∠COD=∠COE+∠DOE=12∠AOB,∵∠APB=54°,∴∠AOB=360°-∠APB-∠OAC-∠OBD=126°,∴∠COD=12∠AOB=63°.故选:B.【题型6 利用切线的性质进行证明】【例6】(2024·山西大同·三模)如图,以△ABC的一边AB为直径作⊙O,点C恰好落在⊙O上,射线CP与⊙O相切于点C.(1)尺规作图:过点B作BD⊥CP于点D,延长DB交⊙O于点E,连接CE;(保留作图痕迹,标明相应字母,不写作法)(2)在(1)的条件下证明:∠ABE=2∠BEC.【答案】(1)见解析(2)见解析【分析】(1)根据要求作出图形即可;(2)利用切线的性质结合BD⊥CP求得BE∥OC,得到∠COB=∠ABE,以及等腰三角形的性质可证∠BCE=∠BAC,利用圆周角定理得到∠A=∠BEC,据此即可求解.【详解】(1)解:所作图形如图所示.(2)解:如图,连接OC,∵CD是⊙O的切线,∴OC⊥CP,即∠OCD=90°,∵BD⊥CP,∴BE∥OC,∴∠COB=∠ABE,∵OA=OC,∴∠A=∠OCA,∴∠COB=2∠A,∵BC=BC,∴∠A=∠BEC,∴∠ABE=2∠BEC.【点睛】本题考查了作图—作垂线,切线的性质,圆周角定理,平行线的判定和性质,等边对等角等知识,正确引出辅助线解决问题是解题的关键.【变式6-1】(23-24九年级·福建莆田·期中)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:AE=DE;(2)若AD=8,DE=5,求BC的长.【答案】(1)见解析(2)152【分析】(1)连接OD,根据切线性质,等角对等边,证明AE=DE.(2)连接CD,根据圆的性质,切线的性质,勾股定理解答即可.本题考查了切线的性质,圆的性质,勾股定理,熟练掌握切线的性质,勾股定理是解题的关键.【详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.∴AE=DE.(2)解:连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC2=AC2-AD2,∴DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=x+82-102,∴x2+62=x+82-102,解得x=92,∴BC=62+922=152.【变式6-2】(23-24九年级·安徽蚌埠·期末)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD于点M,连接OD.(1)若∠ODB=54°,求∠BAC的度数;(2)AC,DB的延长线相交于点F,CE是⊙O的切线,交BF于点E,若CE⊥DF,求证:AC=CD.【答案】(1)36°(2)见详解【分析】(1)根据等腰三角形的性质得到∠ODB=∠OBD=54°,求得∠DOB=180°-∠OBD-∠ODB=72°,根据垂径定理得到BC=BD,于是得到结论;(2)连接OC,BC,根据切线的性质得到OC⊥CE,根据平行线的性质得到∠ACO=∠F,根据等腰三角形的性质得到∠A=∠ACO,求得AB=BF,根据等腰三角形的性质得到AC=CF,等量代换得到结论.本题考查了切线的性质,等腰三角形的判定和性质,平行线的判定和性质,圆周角定理,正确地作出辅助线是解题的关键.【详解】(1)解:∵OD=OB,∴∠ODB=∠OBD=54°,∴∠DOB=180°-∠OBD-∠ODB=72°,∵AB是⊙O的直径,AB⊥CD,∴ BC=BD,∴∠BAC=12∠BOD=36°,故∠BAC的度数为36°;(2)证明:连接OC,BC,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥DF,∴OC∥DF,∴∠ACO=∠F,∵OA=OC,∴∠A=∠ACO,∴∠A=∠F,∴AB=BF,∵AB是⊙O的直径,∴BC⊥AF,∴AC=CF,∵∠A=∠CDB,∴∠CDB=∠F,∴CD=CF,∴AC=CD.【变式6-3】(2024·广东梅州·模拟预测)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.(1)求证∶∠ADE=∠PAE.(2)若∠ADE=30°,连接BD,求证:四边形ADBP是菱形.【答案】(1)见解析(2)见解析【分析】(1)连接OA,由∠PAO=∠DAE=90°,证明∠DAO=∠PAE,∠DAO=∠ADE,进而得证;(2)连接BD,连接OB,证明∠APO=90°-∠AOE=30°,得到AD=AP,由PA、PB为⊙O的切线得到PA=PB=AD,∠PAO=∠PBO=90°,证明Rt△APO≌Rt△BPO,得到∠APO=∠BPO=30°,则∠ADE=∠BPO,得到AD∥BP,又由PA=PB=AD,即可证明四边形ADBP是菱形.【详解】(1)证明:如图,连接OA,∵DE是直径,∴∠DAE=90°即∠DAO+∠OAE=90°∵PA为⊙O的切线,∴∠PAO=90°,即∠PAE+∠OAE=90°.∴∠DAO=∠PAE,∵AO=DO∴∠DAO=∠ADE,∴∠ADE=∠PAE.(2)连接BD,连接OB,如图,∵∠ADE=30°,∴∠AOE=60°,∵PA为⊙O的切线,∴∠PAO=90°,∴∠APO=90°-∠AOE=30°,∴AD=AP∵PA、PB为⊙O的切线,∴PA=PB=AD,∠PAO=∠PBO=90°,∵PO=PO∴Rt△APO≌Rt△BPOHL,∴∠APO=∠BPO=30°∴∠ADE=∠BPO∴AD∥BP,∵PA=PB=AD,∴四边形ADBP是菱形.【点睛】此题考查了切线的性质、切线长定理、圆周角定理、全等三角形的判定和性质、菱形的判定等知识,添加适当的辅助线是证明的关键.【题型7 作圆的切线】【例7】(2024·江苏镇江·一模)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均落在格点上.(1)△ABC的周长为______.(2)请在如图所示的网格中,用无刻度的直尺在AC上确定一点M,使以点M为圆心,以MC为半径的⊙M与AB相切.(保留作图痕迹)【答案】(1)12(2)见解析【分析】(1)根据勾股定理求出AB,根据三角形的周长公式计算即可;(2)根据等腰三角形的性质、角平分线的性质、切线的判定定理作图即可.【详解】(1)解:由勾股定理得:AB=32+42=5,则△ABC的周长=AB+AC+BC=5+4+3=12,故答案为:12;(2)延长BC至D,使BD=AB=5,连接AD,取AD的中点E,连接BE交AC于点M,则点M即为所求.【点睛】本题考查的是勾股定理、切线的判定定理、角平分线的性质、等腰三角形的性质,掌握切线的判定定理是解题的关键.【变式7-1】(23-24九年级·广东广州·期末)如图,直角梯形ABCD中,∠A=∠B=90°,AB=12,CD=AD+BC.(1)尺规作出以AB为直径的圆⊙O(保留作图痕迹,不写作法);(2)判断CD与⊙O的位置关系,并说明理由.【答案】(1)见解析(2)CD与⊙O相切,理由见解析【分析】(1)根据题意作出线段AB的垂直平分线,交AB于点O,然后以O为圆心以OA为半径画圆即可;(2)在线段DC上作DE=AD,连接OE,根据题意证明出BC=EC,然后证明出△ADO≌△EDOSSS,进而求解即可.【详解】(1)如图所示,⊙O即为所要求作的以AB为直径的圆.(2)在线段DC上作DE=AD,连接OE,OD,BE,AE,∵CD=AD+BC,DE=AD,∴CD=DE+BC,∵CD=DE+EC,∴BC=EC,∴∠DAE=∠DEA,∠CBE=∠CEB,∵∠DAE+∠DEA+∠ADE+∠CBE+∠CEB+∠C=360°,∠ADC+∠C=180°,∴∠DEA+∠CEB=90°,∴∠AEB=90°,∵AB为圆⊙O的直径,∴点E在⊙O上,∴在△ADO和△EDO中,AD=DEAO=OEOD=OD∴△ADO≌△EDOSSS,∴∠DAO=∠DEO=90°,∴OE⊥DE,∴CD与⊙O相切.【点睛】此题考查了垂直平分线的尺规作图,切线的判定,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.【变式7-2】(2024·吉林长春·模拟预测)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,以AB为直径的半圆的圆心为O,仅用无刻度的直尺在给定网格中完成画图:(1)请在图1中作出△ABC的AC边上的高BD;(2)请在图2中线段BC上确定一点F,使得OF∥AC;(3)请在图3中作出⊙O的切线AE.【答案】(1)见解析(2)见解析(3)见解析【分析】本题考查作图−复杂作图,圆周角定理,切线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)延长AC交⊙O于点D,连接BD即可;(2)利用三角形的三条中线交于一点解决问题即可;(3)取格点E,连接AE即可.【详解】(1)解:如图1中,线段BD即为所求;(2)解:如图2中,线段OF即为所求; (3)解:如图3中,直线AE即为所求.【变式7-3】(2024·山东德州·中考真题)如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=23. (1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.【答案】(1)详见解析;(2)详见解析;(3)43-2π【分析】(1)过A、C分别作PB、PD的垂线,它们相交于O,然后以OA为半径作⊙O即可;(2)写出已知、求证,然后进行证明;连接OP,先证明RtΔPAO≅RtΔPCO,然后根据切线的判定方法判断PB、PC为⊙O的切线;(3)先证明ΔOAC为等边三角形得到OA=AC=23,∠AOC=60°,再计算出AP=2,然后根据扇形的面积公式,利用劣弧AC与线段PA、PC围成的封闭图形的面积进行计算.【详解】(1)如图, (2)已知:如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=23,过A、C分别作PB、PD的垂线,它们相交于O,以OA为半径作⊙O,OA⊥PB,求证:PB、PC为⊙O的切线;证明:∵∠BPD=120°,PAC=30°,∴∠PCA=30°,∴PA=PC,连接OP,∵OA⊥PA,PC⊥OC,∴∠PAO=∠PCO=90°,∵OP=OP,∴RtΔPAO≅RtΔPCO(HL)∴OA=OC,∴PB、PC为⊙O的切线;(3)∵∠OAP=∠OCP=90°-30°=60°,∴ΔOAC为等边三角形,∴OA=AC=23,∠AOC=60°,∵OP平分∠APC,∴∠APO=60°,∴AP=33×23=2,∴劣弧AC与线段PA、PC围成的封闭图形的面积=S四边形APCO-S扇形AOC=2× 12×23×2-60⋅π⋅(23)2360= 43-2π.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.【题型8 利用切线的判定与性质判断结论正误】【例8】(2024九年级·安徽·专题练习)如图,已知△ABC,以AB为直径的☉O交AC于点E,交BC于点D,且BD=CD,DF⊥AC于点F.给出以下结论:①DF是☉O的切线;②CF=EF;③AE=DE.其中正确结论的序号是( )A.①② B.①③ C.②③ D.①②③【答案】A【分析】由DB=DC,OA=OB,推出OD是△ABC的中位线,OD∥AC,由DF⊥AC,得出DF⊥OD,即DF是☉O的切线,继而证得△ABC是等腰三角形,根据等腰三角形的性质可得∠B=∠C,进而推出△DEC是等腰三角形,进而根据等腰三角形的性质可得CF=EF,由假设推出AE≠DE进而即可求解.【详解】如图,连接OD,DE,AD,∵DB=DC,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是☉O的切线,故①正确;∵∠CED+∠AED=180°,∠B+∠AED=180°,∴∠CED=∠B,∵AB是☉O的直径,∴∠ADB=90°,即AD⊥BC,∵BD=CD,∴AB=AC,∴∠B=∠C,∴∠CED=∠C,∴DC=DE,又∵DF⊥AC,∴CF=EF,故②正确;当∠EAD=∠EDA时, AE=DE,此时△ABC为等边三角形,当△ABC不是等边三角形时,∠EAD≠∠EDA,则AE≠DE∴AE=DE不一定正确,综上,正确结论的序号是①②,故选A.【点睛】本题考查切线的判定及其性质,等腰三角形的判定及其性质,圆周角定理、线段垂直平分线的性质,圆内接四边形的性质等知识,综合性较强,解题的关键是熟练掌握并灵活运用所学知识.【变式8-1】(23-24九年级·安徽合肥·期末)P为⊙O的直径AB的延长线上一点,C为⊙O上一点,分别连接CP、AC,PM平分∠APC,交AC于M,则下列命题为假命题的是( )A.若AC=PC,则∠PMC˙=3∠MPC B.若PC=PO,则∠ACP=3∠PACC.若OA=PB,则∠PAC=30° D.若PC切⊙O于C点,则∠PMC=45°【答案】C【分析】本题考查了等腰三角形的性质,三角形的外角性质,切线的判定和性质.利用等腰三角形的性质结合三角形的外角性质即可判断选项A、B、D正确;假设∠PAC=30°成立,证明△OBC是等边三角形,推出PC是⊙O的切线,与题设相矛盾,可判断选项C不正确.【详解】解:连接OC,∵PM平分∠APC,∴设∠CPM=∠APM=α,若AC=PC,∴∠CAP=∠CPA=2α,则∠PMC˙=∠CAP+∠APM=3α=3∠MPC,选项A正确,不符合题意;若PC=PO,又∵OA=OC,∴∠PCO=∠POC=2∠CAP=2∠ACO,∴∠ACP=∠ACO+∠PCO=3∠PAC,选项B正确,不符合题意;若PC切⊙O于C点,∴OC⊥PC,即∠OCP=90°,∴∠COP=90°-∠APC=90°-2α,∵OA=OC,∴∠CAO=12∠COP=45°-α,∴∠CMP=∠CAO+∠APM=45°-α+α=45°,选项D正确,不符合题意;连接BC,假设∠PAC=30°成立,∵AB为⊙O的直径,∴∠ACB=90°,∴∠OBC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵OA=PB,∴OB=PB=BC,∴点C在以OP为直径的圆B上,即∠OCP=90°,∴PC切⊙O于C点,而题设并没有PC是⊙O的切线这一条件,∴假设∠PAC=30°不成立,选项C不正确,符合题意.故选:C.【变式8-2】(2014·江苏无锡·中考真题)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )A.3 B.2 C.1 D.0【答案】A【详解】解:连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,又∵OB=OD,∴△OBD是等边三角形.∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°.∴BD=BC,②成立.∴AB=2BC,③成立.∴∠A=∠C.∴DA=DC,①成立.综上所述,①②③均成立.故选:A.【点睛】本题考查切线的性质;直角三角形两锐角的关系;等边三角形的判定和性质;等腰三角形的判定.【变式8-3】(23-24九年级·河北保定·期中)在黑板上有如下内容:“如图,AB是半圆O所在圆的直径,AB=2,点C在半圆上,过点C的直线交AB的延长线于点D.”王老师要求添加条件后,编制一道题目,下列判断正确的是( )嘉嘉:若给出∠DCB=∠BAC,则可证明直线CD是半圆O的切线;淇淇:若给出直线CD是⊙O的切线,且BC=BD,则可求出△ADC的面积.A.只有嘉嘉的正确 B.只有淇淇的正确C.嘉嘉和淇淇的都不正确 D.嘉嘉和淇淇的都正确【答案】D【分析】根据切线的求证方法,如图所示(见详解),连接OC,证明OC⊥CD即可求解;根据切线的性质,BC=BD,可求出等腰三角形,等边三角形,根据含特殊角的直角三角形的直线可求出各边的长度,由此即可求解.【详解】解:∵AB是半圆O所在圆的直径,∴∠ACB=90°,如图所示,连接OC,∵OA,OC是半径,∴∠OAC=∠OCA,∵∠OCA+∠OCB=90°,∴∠OAC+∠OCB=90°,嘉嘉给出的条件是:∠DCB=∠BAC,∴∠DCB+∠OCB=90°,即OC⊥CD,且点C在圆上,∴直线CD是半圆O的切线,故嘉嘉给出的条件正确;淇淇给出的条件:直线CD是⊙O的切线,且BC=BD,如图所示,∴OC⊥CD,且△BCD是等腰三角形,∴∠DCB+∠BCO=∠ACO+∠BCO=90°,∴∠ACO=∠DCB,∵∠COB=2∠ACO,∠CBO=2∠DCB,∴CO=CB,且CO=BO,∴△OBC是等边三角形,∴∠CAB=∠ACB=∠BCD=∠D=30°,∵AB=2,∴OA=OC=OB=BC=BD=1,∴AD=3,如图所示,过点C作CE⊥OB于E,在△OBC是等边三角形,OE=32,∴S△ADC=12AD·CE=12×3×32=334,故淇淇给出的条件正确,故选:D.【点睛】本题主要考查圆与特殊角的直角三角形的综合,掌握圆切线的求证方法,含特殊角的直角三角形的性质,等边三角形的性质是解题的关键.【题型9 利用切线的判定与性质进行求值或证明】【例9】(23-24九年级·黑龙江哈尔滨·阶段练习)如图,△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于D、E两点,EF⊥AC,点F为垂足.(1)求证:直线EF是⊙O的切线;(2)当△ABC是等边三角形,且直线DF与⊙O相切时,直接写出长度为线段BE长度2倍的所有线段.【答案】(1)见解析(2)长度为线段BE长度2倍的所有线段有:BD,AF,EC,AO.【分析】(1)利用等腰三角形的性质,同圆的半径相等,平行线的判定与性质和圆的切线的判定定理解答即可;(2)连接DE,利用圆周角定理和含30°角的直角三角形的性质,得到BD=2BE;再利用圆的切线的性质定理,等边三角形的性质和直角三角形的性质,全等三角形的判定与性质解答即可得出结论.【详解】(1)证明:连接OE,如图,∵AB=AC,∴∠B=∠C.∵OB=OC,∴∠B=∠OEB,∴∠OEB=∠C,∴OE∥AC.∵EF⊥AC,∴OE⊥EF,∵OE为⊙O的半径,∴直线EF是⊙O的切线;(2)解:连接DE,如图,∵BD为⊙O的直径,∴∠BED=90°,∵△ABC是等边三角形,∴∠ABC=∠C=∠A=60°,∴∠BDE=30°,∴BD=2BE.∵EF⊥AC,∴∠FEC=90°-∠C=30°,∴∠FED=90°-∠FEC=60°.∵直线DF与⊙O相切,∴BD⊥FD,∴∠EDF=90°-∠BDE=60°,∴∠EDF=∠DEF=∠DFE=60°,∴△DEF为等边三角形,∴DE=DF=EF.在△BDE和△CEF中,∠BED=∠CFE=90°DE=EF∠BDE=∠FEC=30°,∴△BDE≌△CEF(ASA),∴BD=EC.同理:△BDE≌△AFD,∴BD=AF.∴BD=AF=EC.由题意:AD=12AF,∴AD=12BD=OD=OB,∴AO=BD,∴长度为线段BE长度2倍的所有线段有:BD,AF,EC,AO.【点睛】本题主要考查了等腰三角形的性质,等边三角形的性质,圆的有关性质,圆的切线的判定,圆周角定理,全等三角形的判定与性质,含30°角的直角三角形的性质,连接经过切点的半径是解决此类问题常添加的辅助线.【变式9-1】(2024·辽宁沈阳·二模)如图,AB与⊙O相切于点B,AO交⊙O于点F,延长AO交⊙O于点C,连接BC,点D为⊙O上一点,且DF=BF,连接AD.(1)求证:AD是⊙O的切线;(2)若AB=6,AC=8,求⊙O的半径的长.【答案】(1)证明见解析(2)74【分析】本题主要考查了切线的性质与判定, 等弧所对的圆心角相等,全等三角形的性质与判定,勾股定理等等:(1)如图所示,连接OD,OB,由切线的性质得到∠ABO=90°,再由DF=BF得到∠AOD=∠AOB,证明△AOD≌△AOBSAS,得到∠ADO=∠ABO=90°,据此可证明结论;(2)设⊙O的半径为r,则OB=r,OA=AC-OC=8-r,在Rt△ABO中利用勾股定理建立方程求解即可.【详解】(1)证明:如图所示,连接OD,OB,∵AB与⊙O相切于点B,∴∠ABO=90° ,∵DF=BF,∴∠AOD=∠AOB,又∵OD=OB,OA=OA,∴△AOD≌△AOBSAS,∴∠ADO=∠ABO=90°,∵OD是⊙O的半径,∴AD是⊙O的切线;(2)解:设⊙O的半径为r,则OB=r,OA=AC-OC=8-r,在Rt△ABO中,由勾股定理得OA2=OB2+AB2,∴8-r2=r2+62,解得r=74,∴⊙O的半径为74.【变式9-2】(2024·陕西西安·模拟预测)如图,在△ABC中,以边AC上一点O为圆心,OA为半径作⊙O,与AB相切于点A.作CD⊥BO交BO的延长线于点D,且∠CBD=∠DCO.(1)求证:BC是⊙O的切线;(2)若AB=5,BC=13,求⊙O的半径.【答案】(1)见解析(2)103【分析】(1)过O点作OE⊥BC于点E,推导出∠ABO=∠DBC,然后根据角平分线的性质即可得到OE=OA,证明结论;(2)先利用勾股定理求出AC长,然后利用全等三角形得到BE=BA=5,然后再在Rt△OCE中利用勾股定理解题即可.【详解】(1)证明:过O点作OE⊥BC于点E,∵AB与⊙O相切于点A,CD⊥BO∴∠BAO=∠D=90°,又∵∠AOB=∠COD,∴∠ABO=∠DCO,∵∠CBD=∠DCO,∴∠ABO=∠DBC,又∵OA⊥AB,OE⊥BC,∴OE=OA,∴BC是⊙O的切线;(2)解:∵AB=5,BC=13,∴AC=BC2-AB2=132-52=12,在Rt△OAB和Rt△OEB中,OB=OBOA=OE,∴Rt△OAB≌Rt△OEB,∴BE=BA=5,∴CE=BC-BE=13-5=8,在Rt△OCE中,OE2+CE2=OC2,即OA2+82=12-OA2,解得:OA=103.【点睛】本题考查切线的判定与性质,角平分线的性质,勾股定理,全等三角形的判定与性质,解题的关键是掌握切线的判定和性质.【变式9-3】(23-24九年级·广东·单元测试)如图1,AB为⊙O直径,CB与⊙O相切于点B,D为⊙O上一点,连接AD、OC,若AD∥OC.(1)求证:CD为⊙O的切线;(2)如图2,过点A作AE⊥AB交CD延长线于点E,连接BD交OC于点F,若AB=3AE=12,求BF的长.【答案】(1)详见解析(2)181313【分析】(1)连接OD,由切线的性质得出OB⊥BC,证明△DOC≌△BOC,由全等三角形的性质得出∠ODC=∠OBC=90°,则可得出结论;(2)设BC=x,根据切线长定理可得ED=AE=4,CD=CB=x,过点E作EM⊥BC于M,可得EM=12,CM=x-4,由勾股定理求出BC=9,求出OC的长,则可得出答案.【详解】(1)证明:连接OD,∵CB与⊙O相切,∴OB⊥BC,即∠OBC=90°,∵AD∥OC,∴∠A=∠COB,∠ADO=∠DOC,∵OA=OD,∴∠A=∠ADO=∠COB=∠DOC,∴△DOC≌△BOCSAS,∴∠ODC=∠OBC=90°,∴OD⊥DC,又OD为⊙O半径,∴CD为⊙O的切线;(2)解:如图,连接OD,设CB=x,∵AB=3AE=12,∴AE=4,∵AE⊥EB,∴AE为⊙O的切线,∵CD、CB为⊙O的切线,∴ED=AE=4,CD=CB=x,∠CBO=∠BAE=90°,∴CE=4+x,∵OD=OB,∴OC垂直平分BD,∴BD⊥OC,过点E作EM⊥BC于M,则∠BME=∠CBO=∠BAE=90°,∴四边形ABME是矩形,∴EM=AB=12,BM=AE=4,∴CM=x-4,在Rt△CEM中,CE2=CM2+EM2,∴4+x2=122+x-42,解得x=9,∴CB=9,∴OC=OB2+BC2=62+92=313,∵S△OBC=12OB⋅BC=12OC⋅BF,∴BF=OB⋅BCOC=181313.【点睛】此题主要考查了切线的判定和性质、全等三角形的判定和性质、勾股定理、切线长定理等知识的综合应用,是一道综合性较强的题目.【题型10 切线的应用】【例10】(2024·福建宁德·二模)综合与实践:任务一:确定弦的长度.如图2,求AB所对弦AB的长度.任务二:设计甲组扇面.如图3,已知甲组的圆形卡纸直径为303cm.请运用所给工具在⊙O1中设计与图2相同的扇面,并标出相应数据.任务三:确定卡纸大小.如图4,乙组利用矩形卡纸EFGH,恰好设计出与图2相同的扇面,求矩形卡纸的最小规格(即矩形的边长).【答案】任务一:AB=303cm, 任务二:见解析;任务三:矩形的边长为45cm、30cm.【分析】本题考查了垂径定理,含30°角的直角三角形,解题的关键是:熟练掌握相关性质定理.任务一:由弧AB所对的圆心角为120°,可得∠OAB=30°,求得OH=15cm,应用勾股定理求出AH,即可求解, 任务二:以⊙O1直径为底边,构造底角为30度的等腰三角形OAB,则得到的三角形和任务一三角形全等,再按要求取C点,再以O为圆心,分别以OA、OC为半径画弧,得到的扇面图形与图2相同;任务三:在HG上取一点O使OG=30cm,以O为圆心,OG为半径的圆与EF相切,此时B点与G点重合,在圆上取一点A,使∠AOB=120°,即可得到扇面.过点A作MN⊥HG,则矩形FGNM为最小规格矩形,【详解】任务一:解:过点O作OH⊥AB,交AB于点H, ∵∠AOB=120°,OA=OB,∴∠OAB=30°,∵OH⊥AB,∴AH=HB,OH=12OA=12×30=15cm,∴AB=2302-152=303(cm),任务二:如图,△OAB是以⊙O1直径为底边,底角为30度,由任务一可知,∠AOB=120°,取OC=15cm,以O为圆心,分别以OA、OC为半径画弧,即可得到扇面. 任务三:如图所示:当⊙O与矩形两边相切时,过点A作MN⊥HG,则矩形FGNM为最小规格矩形, ∵∠MNG=90°,∠ABO=30°,AB=303,∴AN=153,NG=45cm,OA=OB=30cm,∵当⊙O与矩形两边相切,∴最小规格矩形的边长为45cm、30cm,【变式10-1】(23-24九年级·浙江杭州·)图1是一种推磨工具模型,图2是它的示意图,已知AB⊥PQ,AP=AQ=3dm, AB=12dm,点A在中轴线l上运动,点B在以O为圆心,OB长为半径的圆上运动,且OB=4dm,如图3,当点B按逆时针方向运动到B'时,A'B'与⊙O相切,则AA'= dm.【答案】16-410【分析】由题意得到A′A=OA-OA′=AB+OB-OA′,即可求解.【详解】解:由题意可得:A′A=OA-OA′=AB+OB-OA′=12+4-OB'2+A'B'2=16-42+122=16-410,故答案为:16-410.【点睛】本题考查的是切线的性质,勾股定理,解题的关键是确定转动后图形重要点的位置关系.【变式10-2】(2024·河北邯郸·模拟预测)粒子加速器是当今高能物理学中研究有关宇宙的基本问题的重要工具.图1,图2是某环形粒子加速器的实景图和构造原理图,图3是粒子加速器的俯视示意图,⊙O是粒子真空室,C、D是两个加速电极,高速飞行的粒子J在A点注入,在粒子真空室内做环形运动,每次经过CD 时被加速,达到一定的速度在B点引出,粒子注入和引出路径都与⊙O相切.已知:AB=16km,粒子注入路径与AB夹角α=53°,CD所对的圆心角是60°.(1)求∠ABE的度数;(2)通过计算,比较CD与AB的长度哪个更长;(3)直接写出粒子J在环形运动过程中,粒子J到AB的最远距离.(相关数据: tan37°≈34)【答案】(1)∠ABE=53°(2)AB的长度更长,见解析(3)粒子J到AB的最远距离是16km【分析】(1)如图,延长AF,BE交于G,根据切线长定理和等腰三角形的性质即可得到结论;(2)根据弧长公式求出CD的长,再进行比较即可;(3)如图,当粒子J运动到P点时,离AB的距离最远,根据切线的性质得到∠FAO=90°,再根据垂径定理和三角函数得出AO的长,进而解答即可【详解】(1)解:如图,延长AF,BE交于G,由题意得,AF,BE是⊙O的切线,∴AG=BG,∴∠ABE=∠FAB=α=53°;(2)解:AB的长度更长,∵CD所对的圆心角为60°,OC=OA=10km,∴CD的长度约为60π×10180=103π≈10.5km,∵10.5
相关课件
这是一份初中数学北师大版(2024)九年级下册4 圆周角和圆心角的关系一等奖ppt课件,文件包含专题34圆周角定理十大题型练习北师大版原卷版docx、专题34圆周角定理十大题型练习北师大版解析版docx等2份课件配套教学资源,其中PPT共0页, 欢迎下载使用。
这是一份数学九年级下册4 圆周角和圆心角的关系获奖ppt课件,文件包含专题33弧弦圆心角的关系十大题型练习北师大版原卷版docx、专题33弧弦圆心角的关系十大题型练习北师大版解析版docx等2份课件配套教学资源,其中PPT共0页, 欢迎下载使用。
这是一份数学1 锐角三角函数公开课ppt课件,文件包含专题11锐角的三角函数十大题型练习北师大版原卷版docx、专题11锐角的三角函数十大题型练习北师大版解析版docx等2份课件配套教学资源,其中PPT共0页, 欢迎下载使用。