所属成套资源:2025年中考数学一轮复习讲练测课件 (含解析)
2025年中考数学一轮复习讲练测课件第33讲 统计(含解析)
展开这是一份2025年中考数学一轮复习讲练测课件第33讲 统计(含解析),共38页。PPT课件主要包含了知识建构,考点精讲,考情分析,第一部分,第二部分,第三部分等内容,欢迎下载使用。
1. 全面调查与抽样调查
【使用抽象调查时的注意事项】抽样时注意样本的代表性和广泛性.【小技巧】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.所以要根据调查目的、调查对象等因素,合理选择调查方法,不能凭主观臆想随意选择.
2. 总体、个体、样本及样本容量
3. 几种常见的统计图
1. 条形统计图中每个小长方形的高即为该组对象数据的个数(频数),各小长方形的高之比等于相应的个数(频数)之比.2. 扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.3. 在利用折线统计图比较两个统计量的变化趋势时,要保证两个图中横、纵坐标的一致性,即坐标轴上同一单位长度所表示的意义应该一致.4. 画频数分布直方图时,分组要遵循三个原则:不空,即该组必须有数据;不重,即一个数据只能在一个组;不漏,即不能漏掉某一个数据.
题型01 调查收集数据的过程与方法
题型02 判断全面调查与抽样调查
【例2】(2023·浙江嘉兴·统考一模)下列调查中,适宜采用全面调查方式的是( )A.检测“神舟十四号”载人飞船零件的质量B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量D.检测一批家用汽车的抗撞击能力【变式2-1】(2022·贵州贵阳·统考模拟预测)下列调查中,适宜采用抽样调查的是( )A.调查某班学生的身高情况B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼10”隐形战斗机各零部件的质量
题型03 总体、个体、样本、样本容量
【例3】(2022·贵州贵阳·统考模拟预测)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是( )A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【变式3-1】(2023·江苏无锡·统考二模)为了调查我市某校学生的视力情况,在全校的2000名学生中随机抽取了300名学生,下列说法正确的是( )A.此次调查属于全面调查B.样本容量是300C.2000名学生是总体D.被抽取的每一名学生称为个体
题型04 抽样调查的可靠性
【例4】(2022·河南南阳·统考一模)为了解游客在开封、洛阳和安阳这三个城市旅游的满意度,数学小组的同学商议了几个收集数据的方案.方案一:在多家旅游公司调查1000名导游;方案二:在洛阳调查1000名游客;方案三:在开封调查1000名游客;方案四:在三个城市各调查1000名游客.其中最合理的是( ).A.方案一B.方案二C.方案三D.方案四【变式4-1】(2020·浙江杭州·模拟预测)抽样调查放学时段,学校附近某路口车流量情况的样本中,下列最合适的是( )A.抽取一月份第一周为样本B.抽取任意一天为样本C.选取每周日为样本 D.每个季节各选两周作为样本
题型05 用样本估计总体
【例5】(2023·河北·模拟预测)嘉淇调查了本班学生最喜欢的体育项目情况,并绘制成如图所示的扇形统计图和条形统计图,其中条形统计图被撕坏了一部分,则m与n的和为( )A.24B.26C.52D.54
题型06 统计表 类型一 条形统计图
【例6】(2021·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考二模)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )A.套餐一B.套餐二C.套餐三D.套餐四
【例8】(2023·湖南株洲·模拟预测)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是( )A.平均数是9环B.中位数是9环C.众数是9环D.方差是0.8
【例9】(2023·湖南湘西·统考一模)今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x=________,y=________,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.
类型四 频数分布直方图
类型五 频数分布折线图
题型08 借助调查结果做决策
【例12】(2022·河南洛阳·统考二模)短视频因其交互性强、地域不受限制、受众可划分等特点而广受欢迎,但也不可避免传播了低俗扭曲的不良信息.某市网监办设计了对短视频的态度问卷,四种态度:非常支持、坚决取缔、无所谓、引导管控(以下分别用A,B,C,D表示),调查者在社区对各年龄段居民进行了随机抽查,并将调查结果绘制成两幅不完整的统计图.请根据以上信息解答:(1)本次参加抽样调查的居民有_____________人;(2)将条形统计图补充完整,并计算扇形统图中A所对圆心角的度数为_____________.(3)请根据统计情况,对短视频的去留提出合理化建议.
题型01 与算术平均数有关的计算
【例1】(2022·江苏·统考模拟预测)已知两组数据x,x2,…,xn和y1,y2,…,yn的平均数分别为2和-2,则x1+3y1,x2+3y2,…,xn+3yn的平均数为( )A.-4B.-2C.0D.2
题型02 与加权平均数有关的计算
【例2】(2022·河南郑州·统考一模)小明参加校园歌手比赛,唱功得85分,音乐常识得95分,综合知识得90分,学校如果按如图所示的权重计算总评成绩,那么小明的总评成绩是( )A.87分B.87.5分C.88.5分D.89分
题型03 与中位数有关的计算
【例3】(2022·江苏南京·统考二模)已知一组数据1,2,3,4,5,a,b的平均数是4,若该组数据的中位数小于4,则a的值可能是( )A.7B.8C.9D.10
题型04 与众数有关的计算
【例4】(2023·新疆·统考一模)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )A.5分B.4分C.3分D.45%
【详解】解:由扇形统计图可知:1分所占百分比:5%;2分所占百分比:10%;3分所占百分比:25%;4分所占百分比:45%;5分所占百分比:15%;可知,4分所占百分比最大,故4分出现的次数最多,∴所打分数的众数为4;故选:B.
题型05 与方差有关的计算
题型6 根据方差判断稳定性
题型07 与极差有关的计算
题型08 与标准差有关的计算
题型09 根据已知数据,判断统计量是否正确
【例9】(2023·山东泰安·校考模拟预测)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数
题型10 利用合适的统计量做决策
相关课件
这是一份2025年中考数学一轮复习讲练测课件第31讲 轴对称、平移、旋转(含解析),共60页。PPT课件主要包含了知识建构,考点精讲,考情分析,第一部分,第二部分,第三部分等内容,欢迎下载使用。
这是一份2025年中考数学一轮复习讲练测课件第30讲 投影与视图(含解析),共31页。PPT课件主要包含了知识建构,考点精讲,考情分析,第一部分,第二部分,第三部分等内容,欢迎下载使用。
这是一份2025年中考数学一轮复习讲练测课件第20讲 图形的相似与位似(含解析),共42页。PPT课件主要包含了知识建构,考点精讲,考情分析,第一部分,第二部分,第三部分等内容,欢迎下载使用。