重庆市渝中学区求精中学2025届数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=( )
A.60°B.45°C.30°D.15°
2、(4分)在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为( )
A.x>﹣2B.x<﹣2C.x>1D.x<1
3、(4分)一元二次方程的根是( )
A.B.C.,D.,
4、(4分)若分式无意义,则( )
A.B.C.D.
5、(4分)下列各式从左到右的变形中,是分解因式的是( )
A.B.
C.D.
6、(4分)若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是
A.-1B.0C.1D.2
7、(4分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1B.k>﹣1且k≠0C.k≠0D.k≥﹣1
8、(4分)函数的图象经过点,的值是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直角三角形两边长为5和12,则此直角三角形斜边上的中线的长是_______.
10、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
11、(4分)在四边形中,给出下列条件:① ② ③ ④
其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
12、(4分)如图,小芳作出了边长为1的第1个正△A1B1C1.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第个正△AnBnCn的边长是___________.
13、(4分)已知一次函数的图象经过点,则不等式的解是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)
15、(8分)如图,在□ABCD中,∠BAD的平分线交CD于点E,连接BE并延长交AD延长线于点F,若AB=AF.
(1)求证:点D是AF的中点;
(2)若∠F=60°,CD=6,求□ABCD的面积.
16、(8分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.
根据统计图解答下列问题:
(1)本次测试的学生中,得4分的学生有多少人?
(2)本次测试的平均分是多少分?
(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?
17、(10分)已知A.B两地果园分别有苹果30吨和40吨,C.D两地的农贸市场分别需求苹果20吨和50吨。已知从A.B两地到C.D两地的运价如表:
(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;
(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?
18、(10分)已知直线经过点.
(1)求的值;
(2)求此直线与轴、轴围成的三角形面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.
20、(4分)函数y=(k+1)x﹣7中,当k满足_____时,它是一次函数.
21、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.
22、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
23、(4分)当__________时,分式的值等于零.
二、解答题(本大题共3个小题,共30分)
24、(8分)如果一组数据﹣1,0,2,3,x的极差为6
(1)求x的值;
(2)求这组数据的平均数.
25、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
26、(12分)已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB交AB延长线于点N,连接PB,PC.求证:BN=CM.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连接BD交MN于P′,如图,利用两点之间线段最短可得到此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,然后根据正方形的性质求出∠P′CD的度数即可.
【详解】
连接BD交MN于P′,如图:
∵MN是正方形ABCD的一条对称轴
∴P′B=P′C
∴P′C+P′D=P′B+P′D=BD
∴此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小
∵点P′为正方形的对角线的交点
∴∠P′CD=45°.
故选B.
本题涉及了轴对称-最短路线问题及正方形的性质等知识点,关键是熟练掌握把两条线段的位置关系转换,再利用两点之间线段最短或者垂线段最短来求解.
2、B
【解析】
从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.
【详解】
解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,
∴不等式kx+b<0的解集是x<﹣1.
故选:B.
考查了函数的有关知识,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.
3、D
【解析】
利用因式分解法解方程.
【详解】
∵x(x+3)=0,
∴x=0,或x+3=0,
解得x=0或x=−3.
故选D.
本题主要考查解一元二次方程-因式分解法,熟悉掌握是关键.
4、D
【解析】
根据分母等于零列式求解即可.
【详解】
由题意得
x-1=0,
∴.
故选D.
本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
5、B
【解析】
A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,
故选B.
6、D
【解析】
联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.
【详解】
解:联立,
解得:,
∵交点在第一象限,
∴,
解得:a>1.
故选D.
本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.
7、B
【解析】
试题分析:由方程kx2+2x﹣1=1有两个不相等的实数根可得知b2﹣4ac>1,结合二次项系数不为1,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.
由已知得:, 解得:k>﹣1且k≠1.
考点:根的判别式.
8、A
【解析】
直接把点(1,m)代入正比例函数y=1x,求出m的值即可.
【详解】
解:∵正比例函数y=1x的图象经过点(1,m),
∴m=1.
故选:A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6或6.5
【解析】
分类讨论,(1)若斜边为12,则直角三角形斜边上的中线的长是6;
(2)若12是直角边,则斜边为13,则直角三角形斜边上的中线的长是6.5;
综上述,直角三角形斜边上的中线的长是6或6.5.
10、1
【解析】
结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.
【详解】
解:∵甲出发到返回用时1小时,返回后速度不变,
∴返回到A地的时刻为x=2,此时y=120,
∴乙的速度为60千米/时,
设甲重新出发后的速度为v千米/时,列得方程:
(5﹣2)(v﹣60)=120,
解得:v=100,
设甲在第t小时到达B地,列得方程:
100(t﹣2)=10
解得:t=6,
∴此时乙行驶的路程为:60×6=360(千米),
乙离B地距离为:10﹣360=1(千米).
故答案为:1.
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.
11、①③ ①④ ②④ ③④
【解析】
根据平行四边形的判定定理确定即可.
【详解】
解:如图,
①③:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
①④:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
②④:,, 四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);
③④:, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.
故答案为:①③或①④或②④或③④.
本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.
12、
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.
【详解】
解:由题意得,△A2B2C2的边长为
△A3B3C3的边长为
△A4B4C4的边长为
…,
∴△AnBnCn的边长为
故答案为:
本题考查了三角形中位线定理,三角形的中位线平行于第三边并且等于第三边的一半,根据规律求出第n个等边三角形的边长是解题的关键.
13、
【解析】
将点P坐标代入一次函数解析式得出,如何代入不等式计算即可.
【详解】
∵一次函数的图象经过点,
∴,即:,
∴可化为:,
即:,
∴.
故答案为:.
本题主要考查了一次函数与不等式的综合运用,熟练掌握相关概念是解题关键.
三、解答题(本大题共5个小题,共48分)
14、直线L上距离D点400米的C处开挖.
【解析】
首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.
【详解】
∵CD⊥AC,
∴∠ACD=90°,
∵∠ABD=135°,
∴∠DBC=45°,
∴∠D=45°,
∴△BCD是等腰直角三角形,CB=CD,
在Rt△DCB中:CD2+BC2=BD2,
2CD2=8002,
CD=400(米),
答:直线L上距离D点400米的C处开挖.
此题考查等腰直角三角形的判定及性质,利用勾股定理求直角三角形的边长,邻补角的性质求角度.
15、(1)见解析;(2)S▱ABCD=9.
【解析】
(1)先根据平行四边形的性质得出BC=AD,由等腰三角形三线合一的性质得出BE=EF,利用ASA证明△BCE≌△FDE,得到BC=DF.等量代换即可证明AD=DF,即点D是AF的中点;
(2)根据有一个角是60°的等腰三角形是等边三角形得出△ABF是等边三角形,再证明S▱ABCD=S△ABF.然后由S△ABF=BF•AE列式计算即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BC=AD,CD=AB,BC∥AD,
∴∠CBE=∠F.
∵AB=AF,AE平分∠BAF,
∴BE=EF,AE⊥BF.
在△BCE与△FDE中,
,
∴△BCE≌△FDE(ASA),
∴BC=DF.
∵BC=AD,
∴AD=DF,
即点D是AF的中点;
(2)解:∵∠F=60°,AB=AF,
∴△ABF是等边三角形.
由(1)可知△BCE≌△FDE,
∴S▱ABCD=S△ABF.
∵AF=BF=AB=CD=6,∠F=60°,∠AEF=90°,
∴AE=AF•sin∠F=6×=3,
∴S△ABF=BF•AE=×6×3=9,
∴S▱ABCD=9.
本题考查了平行四边形的性质,等腰三角形的性质,全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,综合性较强,难度适中.
16、(1)25人
(2)37分
(3)第二次测试中得4分的学生有15人、得5分的学生有30人.
【解析】
(1)根据频数、频率和总量的关系:频数=总量频率计算即可.
(2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.
(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.
【详解】
解:(1)本次测试的学生中,得4分的学生有人.
(2)本次测试的平均分平均分(分).
(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,
根据题意,得:,
解得:.
答:第二次测试中得4分的学生有15人、得5分的学生有30人.
17、(1)20,10,30,760;(2)从A果园运到C地的苹果数为5吨
【解析】
(1)A地果园有苹果30吨,运到C地的苹果为10吨,则从A果园运到D地的苹果为30-10吨,从B果园运到C地的苹果为20-10吨,从B果园运到D地的苹果为50-20吨,然后计算运输费用;
(2)表示出从A到C、D两地,从B到C、D两地的吨数,乘以运价就是总费用;根据总运输费为750元列出方程,求值即可.
【详解】
(1)从A果园运到D地的苹果为30−10=20(吨),
从B果园运到C地的苹果为20−10=10(吨),
从B果园运到D地的苹果为50−20=30(吨),
总费用为:10×15+20×12+10×10+30×9=760(元),
故答案为:20,10,30,760;
(2)设从A果园运到C地的苹果数为x吨,则
总费用为:15x+(360−12x)+10(20−x)+9×[40−(20−x)]+740
由题意得2x+740=750,
解得x=5.
答:从A果园运到C地的苹果数为5吨。
此题考查一元一次方程的应用,解题关键在于列出方程
18、 (1) ;(2)2.
【解析】
(1)把带入求解即可;(2)先求出一次函数y=-x+2与x轴和y轴的交点,再利用三角形的面积公式求解即可.
【详解】
(1)将点代入
得
∴
(2)
由(1)得直线解析式为
令,得到与轴交点为
令,得到与轴交点为
∴直线与两坐标轴围成的三角形面积为.
本题考查了待定系数法求一次函数解析式及三角形的面积,难度不大,属于基础题,注意细心运算即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.
【详解】
如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.
∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.
故答案为:2.
本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.
20、k≠﹣1.
【解析】
根据一次函数的定义即可解答.
【详解】
根据一次函数定义得,k+1≠0,
解得k≠﹣1.
故答案为:k≠﹣1.
本题考查了一次函数的定义,熟知形如y=kx+b(k≠0)的函数是一次函数是解决问题的关键.
21、6
【解析】
作PD⊥BC,所以,设P(x,y). 由,得平行四边形面积=BC•PD=xy.
【详解】
作PD⊥BC,
所以,设P(x,y).
由,
得平行四边形面积=BC•PD=xy=6.
故答案为:6
本题考核知识点:反比例函数意义. 解题关键点:熟记反比例函数的意义.
22、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
23、-2
【解析】
令分子为0,分母不为0即可求解.
【详解】
依题意得x2-4=0,x-2≠0,解得x=-2,
故填:-2.
此题主要考查分式的值,解题的关键是熟知分式的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)x=1或x=-3;(2)或
【解析】
(1)根据极差的定义求解.分两种情况:x为最大值或最小值.(2)根据平均数的公式求解即可。
【详解】
解:(1)∵3+1=4<6,∴x为最大值或最小值.
当x为最大值时,有x+1=6,解得x=1.
当x为最小值时,3﹣x=6,解得x=﹣3;
(2)当x为1时,平均数为 .
当x为﹣3时,平均数为 .
本题考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.
25、(1)该户6月份水费是45元;(2)y=3.3x-1.
【解析】
(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
【详解】
解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
2.5×18=45(元),
答:该户6月份水费是45元;
(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
应缴水费y=2.5×20+3.3×(x-20),
整理后得:y=3.3x-1,
答:y关于x的函数关系式为y=3.3x-1.
本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
26、见解析
【解析】
根据角平分线上的点到角的两边距离相等可得PM=PN,线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PBN和Rt△PCM全等,根据全等三角形对应边相等证明即可.
【详解】
∵AP是∠BAC的平分线,PM⊥AC,PN⊥AB,
∴PM=PN,
∵PQ是线段BC的垂直平分线,
∴PB=PC,
在Rt△PBN和Rt△PCM中, ,
∴Rt△PBN≌Rt△PCM(HL),
∴BN=CM.
本题考查了全等三角形的判定与性质,主要利用了角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并准确确定出全等三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末联考模拟试题【含解析】: 这是一份重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末联考模拟试题【含解析】,共17页。试卷主要包含了答题时请按要求用笔,如图,直线y=ax+b过点A等内容,欢迎下载使用。
重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末达标检测试题【含解析】: 这是一份重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末达标检测试题【含解析】,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,如果点,如图,若,则下列结论错误的是等内容,欢迎下载使用。
重庆市渝中学区求精中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】: 这是一份重庆市渝中学区求精中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】,共17页。试卷主要包含了考生要认真填写考场号和座位序号,若关于x的方程无解,则a的值是等内容,欢迎下载使用。