重庆市第110中学2025届数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形中,,,点是的中点,平分交于点,过点作于点,连接,则的长为( )
A.3B.4C.5D.6
2、(4分)如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( )
A.9cm2B.8cm2C.6cm2D.12 cm2
3、(4分)关于一次函数,下列结论正确的是( )
A.随的增大而减小B.图象经过点(2,1)C.当﹥时,﹥0D.图象不经过第四象限
4、(4分)如图,、两处被池塘隔开,为了测量、两处的距离,在外选一点,连接、,并分别取线段、的中点、,测得,则的长为( )
A.B.C.D.
5、(4分)如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是( )
A.31x+10x﹣1x1=540
B.31x+10x=31×10﹣540
C.(31﹣x)(10﹣x)=540
D.(31﹣x)(10﹣x)=31×10﹣540
6、(4分)已知 y1 x 5 , y2 2x 1 .当 y1 y2 时,x 的取值范围是( )
A.x 5B.x C.x 6D.x 6
7、(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=3EQ;④△PBF是等边三角形,其中正确的是( )
A.①②③B.②③④C.①②④D.①③④
8、(4分)如表是某公司员工月收入的资料.
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:
10、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
11、(4分)关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.
12、(4分)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,则甲、乙两名同学成绩更稳定的是 .
13、(4分)在矩形ABCD中,点A关于∠B的平分线的对称点为E,点E关于∠C的平分线的对称点为F.若AD=AB=2,则AF2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)遂宁骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年2月份销售总额为3万元,今年经过改造升级后A型车每辆销售价比去年增加300元,若今年2月份与去年2月份卖出的A型车数量相同,则今年2月份A型车销售总额将比去年2月份销售总额增加20%.
(1)求今年2月份A型车每辆销售价多少元?
(2)该车行计划今年3月份新进一批A型车和B型车共40辆,且B型车的进货数量不超过A型车数量的2倍,A、B两种型号车的进货和销售价格如表,问应如何进货才能使这批车获利最多?
15、(8分)阅读下列材料:
关于x的方程:的解是,;即的解是;的解是,;的解是,;
请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.
由上述的观察、比较、猜想、验证,可以得出结论:
如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.
16、(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
17、(10分)如图,点D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.
18、(10分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
20、(4分)若代数式的值等于0,则x=_____.
21、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
22、(4分)平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标xP的取值范围是__.
23、(4分)数据,,,,,的方差_________________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
25、(10分)某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
(1)求、两种商品每件的进价分别是多少元?
(2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进、两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
26、(12分)如图,在平面直角坐标系中,已知点和点.
(1)求直线所对应的函数表达式;
(2)设直线与直线相交于点,求的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
连接CG,由矩形的性质好已知条件可证明EF是△DGC的中位线,在直角三角形GBC中利用勾股定理可求出CG的长,进而可求出EF的长.
【详解】
连接CG,
∵四边形ABCD是矩形,
∴AB∥CD,∠B=90∘,AD=BC=8,
∴∠AGD=∠GDC,
∵DG平分∠ADC,
∴∠ADG=∠GDC,
∴∠AGD=∠ADG,
∴AG=AD=8,
∵AF⊥DG于点F,
∴FG=FD,
∵点E是CD的中点,
∴EF是△DGC的中位线,
∴EF=CG,
∵AB=14,
∴GB=6,
∴CG==10,
∴EF=×10=5,
故选C.
此题主要考查矩形的线段求解,解题的关键是熟知平行线的性质、三角形中位线定理及勾股定理的运用.
2、A
【解析】
先证明△AEH∽△AFG∽△ABC,再根据相似三角形的面积比是相似比的平方,即可得出结果.
【详解】
解:∵是面积为的等边三角形
∴
∵矩形平行于
∴
∴
∵被截成三等分
∴,
∴
∴
∴图中阴影部分的面积
故选:A
本题考查了相似三角形的判定和性质,正确理解题意并能灵活运用相关判定方法和性质是解题的关键.
3、C
【解析】
分析:根据k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项的正误;把点(2,1)代入y=3x-1即可判断函数图象不过点(2,1)可判断B选项;当3x-1>0,即x>时,y>0,可判断C选项正误.
详解:当k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项错误;
当x=2时,y=2×2-1=3≠1,故选项B错误;
当3x-1>0,即x>时,y>0,,所以C选项正确;
故选C.
点睛:本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
4、C
【解析】
根据题意直接利用三角形中位线定理,可求出.
【详解】
、是、的中点,
是的中位线,
,
,
.
故选.
本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.
5、C
【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.
【详解】
解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,
∴可列方程为:(31﹣x)(10﹣x)=2.
故选:C.
本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.
6、C
【解析】
由题意得到x-5>2x+1,解不等式即可.
【详解】
∵y1>y2,
∴x−5>2x+1,
解得x<−6.
故选C.
此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则.
7、D
【解析】
求出BE=2AE,根据翻折的性质可得PE=BE,由此得出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③正确;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,故④正确.
【详解】
∵AE=AB,∴BE=2AE,
由翻折的性质得:PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;
∵BE=PE,∴EF=2PE,
∵EF>PF,∴PF<2PE,故②错误;
由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正确;
由翻折的性质,∠EFB=∠EFP=30°,
则∠BFP=30°+30°=60°,
∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确.
故选D.
本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定等知识,熟记各性质并准确识图是解题的关键.
8、C
【解析】
求出数据的众数和中位数,再与25名员工的收入进行比较即可.
【详解】
该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,
所以众数能够反映该公司全体员工月收入水平;
因为公司共有员工1+1+1+3+6+1+11+1=25人,
所以该公司员工月收入的中位数为3400元;
由于在25名员工中在此数据及以上的有13人,
所以中位数也能够反映该公司全体员工月收入水平;
故选C.
此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.
【解析】
根据运算法则进行运算即可.
【详解】
原式==2
此是主要考查二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
10、2.
【解析】
利用相似三角形的性质即可解决问题.
【详解】
∵△ABC∽△ADB,
∴,
∴AB2=AD•AC=2×4=8,
∵AB>0,
∴AB=2,
故答案为:2.
此题考查相似三角形的性质定理,相似三角形的对应边成比例.
11、a<﹣7
【解析】
求出方程的解,根据方程的解是正数得出>0,求出即可.
【详解】
解:3x+a=x-7
3x-x=-a-7
2x=-a-7
x=,
∵>0,
∴a<-7,
故答案为:a<-7
本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.
12、乙
【解析】
试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,
∵,∴甲、乙两名同学成绩更稳定的是乙.
13、40﹣16
【解析】
由AD=AB=2,可求得AB=2,AD=2,又由在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F,根据轴对称的性质,可求得BE,CF的长,继而求得DF的长,然后由勾股定理求得答案.
【详解】
∵AD=AB=2,
∴AB=2,AD=2,
∵四边形ABCD是矩形,
∴BC=AD=2,CD=AB=2,
∵在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F,
∴BE=AB=2,
∴CF=CE=BC﹣BE=2﹣2,
∴DF=CD﹣CF=4﹣2,
∴AF2=AD2+DF2=(2)2+(4﹣2)2=40﹣16.
故答案为:40﹣16;
此题考查了矩形的性质、轴对称的性质以及勾股定理.解题关键在于注意掌握轴对称图形的对应关系.
三、解答题(本大题共5个小题,共48分)
14、(1)今年的销售价为1800元;(2)购进A型车14辆,B型车26辆,获利最多.
【解析】
(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,然后依据今年2月份与去年2月份卖出的A型车数量相同列方程求解即可;
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,然后列出W与m的函数关系式,然后依据一次函数的性质求解即可.
【详解】
解:(1)设去年2月份A型车每辆的售价为x元,
则今年2月份A型车每辆的售价为(x+300)元,
根据题意得:,
解得:x=1500,
经检验,x=1500是原方程的解,
则今年的销售价为1500+300=1800元.
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,
根据题意得:
w=(1800﹣900)m+(2000﹣1000)(40﹣m)=﹣10m+1.
又∵40﹣m≤2m,
∴m≥13.
∵k=﹣100<0,
∴当m=14时,w取最大值.
答:购进A型车14辆,B型车26辆,获利最多.
本题考查了一次函数的应用、分式方程的应用,依据题意列出分式方程、得到W与m的函数关系式是解题的关键.
15、猜想的解是,.验证见解析;,.
【解析】
此题为阅读分析题,解此题要注意认真审题,找到规律:的解为,.据规律解题即可.
【详解】
猜想的解是,.
验证:当时,方程左边,方程右边,
方程成立;
当时,方程左边,方程右边,
方程成立;
的解是,;
由得,
,,
,.
考查解分式方程,通过观察,比较,猜想,验证,可以得出结论.解决此题的关键是理解题意,认真审题,寻找规律.
16、(1)(0,3);(2).
【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
【详解】
(1)在Rt△AOB中,
∵,
∴,
∴OB=3,
∴点B的坐标是(0,3) .
(2)∵=BC•OA,
∴BC×2=4,
∴BC=4,
∴C(0,-1).
设的解析式为,
把A(2,0),C(0,-1)代入得:,
∴,
∴的解析式为是.
考点:一次函数的性质.
17、AC=2
【解析】
可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
【详解】
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴,
∴AC2=AD·AB,
∴AC2=12,
∴AC=2 (负值舍去)
本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.
18、见解析
【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.
【详解】
证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS);
∴AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=BC=DC,
∴四边形ADCF是菱形.
本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可得出答案.
【详解】
如图所示,延长CM交AB于G,延长CN交AB于H,
∵∠ACB=90°,AC=6,BC=8,
∴由勾股定理得AB=10,
在△BMC和△BMG中,
,
∴△BMC≌△BMG,
∴BG=BC=8,CM=MG,
∴AG=1,
同理,AH=AC=6,CN=NH,
∴GH=4,
∵CM=MG,CN=NH,
∴MN=GH=1.
故答案为:1.
本题考查了等腰三角形的判定和性质、三角形的中位线.利用全等证出三角形BCE与三角形ACH是等腰三角形是解题的关键.
20、2
【解析】
由分式的值为零的条件得x2-5x+6=0,2x-6≠0,
由x2-5x+6=0,得x=2或x=3,
由2x-6≠0,得x≠3,
∴x=2.
21、1.
【解析】
多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=4360,
解得:n=1.
则此多边形的边数是1.
故答案为1.
22、﹣3≤xP≤3,且xp≠1.
【解析】
因为点P、Q是线段CG上的互反等点,推出点P在线段CC′上,由此可确定点P的横坐标xP的取值范围;
【详解】
如图,设C关于y轴的对称点C′(﹣3,8).
由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,
所以点P只能在线段CC′上,
所点P的横坐标xP的取值范围为:﹣3≤xP≤3,且xp≠1.
故答案为:﹣3≤xP≤3,且xp≠1.
本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.
23、;
【解析】
首先计算平均数,再利用方差的公式计算即可.
【详解】
根据题意可得平均数
所以
故答案为1
本题主要考查方差的计算公式,应当熟练掌握,这是数据统计里一个比较重要的概念.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
25、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.
【解析】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.
【详解】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,
根据题意得:
,
解得:
.
答:A种商品每件的进价为20元,B种商品每件的进价为80元.
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,
根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+1.
∵A种商品的数量不少于B种商品数量的4倍,
∴1000-m≥4m,
解得:m≤2.
∵在w=10m+1中,k=10>0,
∴w的值随m的增大而增大,
∴当m=2时,w取最大值,最大值为10×2+1=120,
∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.
此题考查一次函数的应用,二元一次方程组的应用,解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.
26、(1);(2).
【解析】
(1)根据点A,B的坐标,利用待定系数法即可求出直线AB所对应的函数表达式;
(2)联立直线OC及直线AB所对应的函数表达式为方程组,通过解方程组可求出点C的坐标,再利用三角形的面积公式结合点A的坐标即可求出△AOC的面积.
【详解】
解:(1)设直线AB所对应的函数表达式为y=kx+b(k≠0),
将A(5,0),B(0,4)代入y=kx+b,得:,
解得: ,
∴直线AB所对应的函数表达式;
(2)联立直线OC及直线AB所对应的函数表达式为方程组,得:,
解得:,
∴点C坐标,
.
本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题的关键是:(1)根据点A,B的坐标,利用待定系数法求出直线AB所对应的函数表达式;(2)联立两直线的函数表达式成方程组,通过解方程组求出点C的坐标.
题号
一
二
三
四
五
总分
得分
批阅人
A型车
B型车
进货价格(元/辆)
900
1000
销售价格(元/辆)
今年的销售价格
2000
购进数量(件)
购进所需费用(元)
第一次
30
40
3800
第二次
40
30
3200
山东省临沂太平中学2025届九上数学开学调研试题【含答案】: 这是一份山东省临沂太平中学2025届九上数学开学调研试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
宁夏中学宁县2024-2025学年九上数学开学调研试题【含答案】: 这是一份宁夏中学宁县2024-2025学年九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届重庆市长寿区名校数学九上开学调研模拟试题【含答案】: 这是一份2025届重庆市长寿区名校数学九上开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。