2024-2025学年重庆市渝北八中学九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个正多边形的内角和是1440°,则它的每个外角的度数是( )
A.30° B.36° C.45° D.60°
2、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x>1D.x≠1
3、(4分)已知直角三角形两边的长为3和4,则此三角形的周长为( )
A.12B.7+C.12或7+D.以上都不对
4、(4分)下列各式中,运算正确的是
A.B.C.D.
5、(4分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区 户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是( )
A.极差是 B.众数是 C.中位数是 D.平均数是
6、(4分)下列说法正确的是( )
A.明天的天气阴是确定事件
B.了解本校八年级(2)班学生课外阅读情况适合作抽查
C.任意打开八年级下册数学教科书,正好是第5页是不可能事件
D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000
7、(4分)一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
8、(4分)下列各式中的最简二次根式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简的结果为______.
10、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.
11、(4分)直线沿轴平行的方向向下平移个单位,所得直线的函数解析式是_________
12、(4分)的平方根是____.
13、(4分)计算:(π﹣3)0﹣(﹣)﹣2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有150人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下:
七年级 88 94 90 94 84 94 99 94 99 100
八年级 84 93 88 94 93 98 93 98 97 99
整理数据:按如下分段整理样本数据并补全表格:
分析数据:补全下列表格中的统计量:
得出结论:你认为抽取的学生哪个年级的成绩较为稳定?并说明理由.
15、(8分)已知:如图,一次函数与的图象相交于点.
(1)求点的坐标;
(2)结合图象,直接写出时的取值范围.
16、(8分)计算:
(1) ;
(2)(﹣1)(+1)+(﹣2)2
17、(10分)解下列方程式:
(1)x2﹣3x+1=1.
(2)x2+x﹣12=1.
18、(10分)如图,在□ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于点F.
(1)若∠F=20°,求∠A的度数;
(2)若AB=5,BC=8,CE⊥AD,求□ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.
20、(4分)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是 .
21、(4分)二次根式中,x的取值范围是 .
22、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.
23、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 个单位长度;△AOC与△OBD关于直线对称,则对称轴是 ;△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是 度;
(2)连接AD,交OC于点E,求∠AEO的度数.
25、(10分)(1)分解因式:a(a﹣b)﹣b(a﹣b);(2)已知x+2y=4,求3x2+12xy+12y2的值.
26、(12分)如图,在四边形中,,于点,.求证.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先设该多边形是n边形,根据多边形内角和公式列出方程,求出n的值,即可求出多边形的边数,再根据多边形的外角和是360°,利用360除以边数可得外角度数.
【详解】
设这个多边形的边数为n,则
(n-2)×180°=1440°,
解得n=1.
外角的度数为:360°÷1=36°,
故选B.
此题考查了多边形的内角与外角,关键是根据多边形的内角和公式(n-2)•180°和多边形的外角和都是360°进行解答.
2、D
【解析】
要使分式有意义,则必须分母不等于0.
【详解】
使分式有意义,则x-1≠0,所以x≠1.
故选D
本题考核知识点:分式有意义的条件. 解题关键点:记住要使分式有意义,则必须分母不等于0.
3、C
【解析】
设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C
4、D
【解析】
根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得.
【详解】
A、,故A选项错误;
B、、不是同类项,不能合并,故B选项错误;
C、,故C选项错误;
D、,故D选项正确,
故选D.
本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键.
5、B
【解析】
试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:
A、极差=14﹣7=7,结论正确,故本选项错误;
B、众数为7,结论错误,故本选项正确;
C、中位数为8.5,结论正确,故本选项错误;
D、平均数是8,结论正确,故本选项错误.
故选B.
6、D
【解析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.
【详解】
解:A、明天的天气阴是随机事件,故错误;
B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;
C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;
D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;
故选:D.
本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.
7、C
【解析】
根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴商家更应该关注鞋子尺码的众数.
故选C.
本题考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
8、C
【解析】
最简二次根式必须满足两个条件:①被开方数中不含开得尽方的因数(或因式);②被开方数中不含分母;由此可知选项A、B、D都不符合要求,只有C选项符合.故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据二次根式的性质进行化简.由即可得出答案.
【详解】
解:,
故答案为:.
本题考查的是二次根式的化简,掌握二次根式的性质: 是解题的关键.
10、
【解析】
首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.
【详解】
解:由勾股定理得:,
则,
点表示,
点表示,
故答案为:.
此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
11、;
【解析】
根据函数的性质,一次项的系数决定直线的走向,常数项决定在y轴的交点,因此向下3个单位,就对常数项进行变化,一次项系数不变.
【详解】
根据一次函数的性质,上下平移只对常数项进行分析,向下平移对常数项减去相应的数,向上平移对常数项加上相应的数,因此可得 ,即
故答案为
本题主要考查一次函数的性质,关键要理解一次函数的一次项系数和常数项所代表的意义.
12、±3
【解析】
∵=9,
∴9的平方根是.
故答案为3.
13、-1.
【解析】
根据零指数幂以及负整数指数幂的意义即可求出答案.
【详解】
解:原式=1﹣(﹣2)2=1﹣4=﹣1
故答案为:﹣1.
本题考查了零指数幂以及负整数指数幂的运算,掌握基本的运算法则是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、1,1,93.5,1;八年级的成绩较为稳定.
【解析】
根据中位数,众数和方差的定义即可得到结论.
【详解】
整理数据:按如下分段整理样本数据并补全表格:
分析数据:补全下列表格中的统计量:
八年级的成绩较为稳定,理由:∵七年级的方差=24.2,八年级的方差=20.4,24.2>20.4,∴八年级的成绩较为稳定.
故答案为:1,1,93.5,1.
本题考查了中位数,众数,方差,熟练掌握中位线,众数和方差的定义是解题的关键.
15、(1)点A的坐标为;(2)
【解析】
(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;
(2)根据函数图象以及点A坐标即可求解.
【详解】
解:(1)依题意得:,
解得:,
∴点A的坐标为;
(2) 由图象得,当时,的取值范围为:.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
16、 (1);(2)8-
【解析】
(1)根据二次根式的混合运算法则进行计算即可.
(2)利用完全平方公式和平方差公式进行计算即可.
【详解】
(1)原式=3++2﹣
=3+2+
=;
(2)原式=2﹣1+3﹣4+4
=8﹣4.
此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.
17、(1)x=;(2)x=﹣4或x=3.
【解析】
(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.
【详解】
(1)∵x2﹣3x+1=1,
∴x2﹣3x=﹣1,
∴x2﹣3x+=,
∴(x﹣)2=,
∴x=;
(2)∵x2+x﹣12=1,
∴(x+4)(x﹣3)=1,
∴x=﹣4或x=3;
本题考查了一元二次方程的解法,根据方程的特点选择合适的方法是解决问题的关键.
18、 (1) 140°;(2) S▱ABCD=32.
【解析】
(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBF,
(2)∵AE=AB=5,AD=BC=8,CD=AB=5,
∴DE=AD−AE=3,
∵CE⊥AD,
∴▱ABCD的面积=AD⋅CE=8×4=32.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据直角三角形斜边上的中线是斜边的一半可以解答本题.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,
∴∠CDA=90°,△ADC是直角三角形,
∴AC=2DE,
∵DE=5,
∴AC=1,
故答案为:1.
本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.
20、.
【解析】
试题分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.
试题解析:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,
∵四边形ABCD是菱形,
∴AC,BD互相垂直平分,
∴点B关于AC的对称点为D,
∴FD=FB,
∴FE+FB=FE+FD≥DE.
只有当点F运动到点M时,取等号(两点之间线段最短),
△ABD中,AD=AB,∠DAB=120°,
∴∠HAD=60°,
∵DH⊥AB,
∴AH=AD,DH=AD,
∵菱形ABCD的边长为4,E为AB的中点,
∴AE=2,AH=2,
∴EH=4,DH=,
在RT△EHD中,DE=
∴EF+BF的最小值为.
【考点】1.轴对称-最短路线问题;2.菱形的性质.
21、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
22、
【解析】
由菱形的对角线互相平分且垂直可知菱形的面积等于小三角形面积的四倍可求出DO,根据勾股定理可求出AD,然后再根据直角三角形中斜边的中线等于斜边的一半,求解即可.
【详解】
解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4 ,
∴AO=2,DO=,∠AOD=90°,
∴AD=3,
∵E为AD的中点,
∴OE的长为:AD=.
故答案为: .
菱形的对角线的性质、勾股定理、直角三角形的性质都是本题的考点,根据题意求出DO和AD的长是解题的关键.
23、
【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
【详解】
解:由直线a∥b∥c,根据平行线分线段成比例定理,
即可得,
又由AC=3,CE=5,DF=4
可得:
解得:BD=.
故答案为.
此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)2;y轴;120(2)90°
【解析】
(1)由点A的坐标为(-2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;
(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.
【详解】
(1)∵点A的坐标为(-2,0),
∴△AOC沿x轴向右平移2个单位得到△OBD;
∴△AOC与△BOD关于y轴对称;
∵△AOC为等边三角形,
∴∠AOC=∠BOD=60°,
∴∠AOD=120°,
∴△AOC绕原点O顺时针旋转120°得到△DOB.
(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,
∴OA=OD,
∵∠AOC=∠BOD=60°,
∴∠DOC=60°,
即OE为等腰△AOD的顶角的平分线,
∴OE垂直平分AD,
∴∠AEO=90°.
25、(1)(a﹣b)2;(2)1.
【解析】
(1)直接提取公因式(a-b),进而分解因式得出答案
(2)直接利用提取公因式法分解因式进而把已知代入得出答案
【详解】
解:(1)a(a﹣b)﹣b(a﹣b)
=(a﹣b)(a﹣b)
=(a﹣b)2;
(2)∵x+2y=4,
∴3x2+12xy+12y2
=3(x2+4xy+4y2)
=3(x+2y)2
把x+2y=4代入得:
原式=3×42=1.
此题考查提取公因式法,掌握运算法则是解题关键
26、见解析
【解析】
根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;
【详解】
证明:连接.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
本题考查了勾股定理的应用,正确作出辅助线是解答本题的关键. 在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.
题号
一
二
三
四
五
总分
得分
尺码
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
20
4
5
5
2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市南川中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市南川中学数学九上开学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
2024-2025学年山东省滕州市北辛中学九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年山东省滕州市北辛中学九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。