|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】
    立即下载
    加入资料篮
    山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】01
    山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】02
    山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】

    展开
    这是一份山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为( )
    A.向左平移了个单位长度B.向下平移了个单位长度
    C.横向压缩为原来的一半D.纵向压缩为原来的一半
    2、(4分)对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )
    A.2-4B.2C.2D.20
    3、(4分)己知一次函数,若随的增大而增大,则的取值范围是( )
    A.B.C.D.
    4、(4分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( )
    A.至少有一个内角是直角B.至少有两个内角是直角
    C.至多有一个内角是直角D.至多有两个内角是直角
    5、(4分)如图,由绕点旋转而得到,则下列结论不成立的是( )
    A.点与点是对应点B.
    C.D.
    6、(4分)到三角形三个顶点距离相等的点是( )
    A.三角形三条边的垂直平分线的交点
    B.三角形三条角平分线的交点
    C.三角形三条高的交点
    D.三角形三条边的中线的交点
    7、(4分)下列各组数据中,不能作为直角三角形边长的是( )
    A.B.C.D.
    8、(4分)若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
    10、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.
    11、(4分)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).
    12、(4分)如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为A(3,a)、B(2,2)、C(b,3)、D(8,6),则a+b的值为_____.
    13、(4分)直线y=3x-2不经过第________________象限.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,
    (1)当∠ADE=15°时,求∠DGC的度数;
    (2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;
    (3)如图2, 当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论。
    15、(8分)请阅读下列材料:
    问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
    请你参考小东同学的做法,解决如下问题:
    现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
    16、(8分)已知,在中,,于点,分别交、于点、点,连接,若.
    (1)若,求的面积.
    (2)求证:.
    17、(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
    (发现与证明)中,,将沿翻折至,连结.
    结论1:与重叠部分的图形是等腰三角形;
    结论2:.
    试证明以上结论.
    (应用与探究)
    在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)
    18、(10分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
    (1)开始旋转前,即在图1中,连接NC.
    ①求证:NC=NA(M);
    ②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
    (2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
    (3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.
    20、(4分)对于两个不相等的实数a、b,定义一种新的运算如下:(a+b>0),如:3*2= =,那么7*(6*3)=__.
    21、(4分)若代数式的值大于﹣1且小于等于2,则x的取值范围是_____.
    22、(4分)一列数,,,,其中,(为不小于的整数),则___.
    23、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
    (1)求A,B两款书包分别购进多少个?
    (2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
    25、(10分)某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.
    根据上表解答下列问题:
    (1)完成下表:
    (2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?
    (3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
    26、(12分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF
    (1)填空∠B=_______°;
    (2)求证:四边形AECF是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    ∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,
    ∴该正方形在纵向上没有变化.
    又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,
    ∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.
    故选C.
    2、B
    【解析】
    试题分析:∵3>2,∴3※2=,∵8<22,∴8※22==,∴(3※2)×(8※22)=()×=2.故选B.
    考点:2.二次根式的混合运算;2.新定义.
    3、A
    【解析】
    根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.
    【详解】
    解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,
    ∴k﹣1>0,
    解得k>1,
    故选A.
    一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.
    4、B
    【解析】
    本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.
    【详解】
    根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.
    故选B.
    本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.
    5、C
    【解析】
    根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,依次分析可得答案.
    【详解】
    A. 点与点是对应点,成立;
    B. ,成立;
    C. ,不成立;
    D. ,成立;
    故答案为:C.
    本题考查了三角形旋转的问题,掌握旋转的性质是解题的关键.
    6、A
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等解答.
    【详解】
    解:∵线段垂直平分线上的点到线段两个端点的距离相等,
    ∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
    故选:A.
    本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.
    7、C
    【解析】
    根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.因此,只需要判断两个较小的数的平方和是否等于最大数的平方即可判断.
    【详解】
    解:A、92+122=152,根据勾股定理的逆定理可知是直角三角形,故选项错误;
    B、52+122=132,根据勾股定理的逆定理可知是直角三角形,故选项错误;
    C、32+52≠72,根据勾股定理的逆定理可知不是直角三角形,故选项正确;
    D、12+=22,根据勾股定理的逆定理可知是直角三角形,故选项错误.
    故选C.
    本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.
    8、D
    【解析】
    ∵一次函数y=ax+b的图象经过第一、二、四象限,
    ∴a<0,b>0,
    ∴a+b不一定大于0,故A错误,
    a−b<0,故B错误,
    ab<0,故C错误,
    <0,故D正确.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、①②③④
    【解析】
    分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.
    详解:∵BC=EC,
    ∴∠CEB=∠CBE,
    ∵四边形ABCD是平行四边形,
    ∴DC∥AB,
    ∴∠CEB=∠EBF,
    ∴∠CBE=∠EBF,
    ∴①BE平分∠CBF,正确;
    ∵BC=EC,CF⊥BE,
    ∴∠ECF=∠BCF,
    ∴②CF平分∠DCB,正确;
    ∵DC∥AB,
    ∴∠DCF=∠CFB,
    ∵∠ECF=∠BCF,
    ∴∠CFB=∠BCF,
    ∴BF=BC,
    ∴③正确;
    ∵FB=BC,CF⊥BE,
    ∴B点一定在FC的垂直平分线上,即PB垂直平分FC,
    ∴PF=PC,故④正确.
    故答案为①②③④.
    点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.
    10、1
    【解析】
    将化为顶点式,即可求得s的最大值.
    【详解】
    解:,
    则当时,取得最大值,此时,
    故飞机着陆后滑行到停下来滑行的距离为:.
    故答案为:1.
    本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.
    11、xn+1-1
    【解析】
    观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.
    12、12
    【解析】
    如图,连接AC、BD交于点O′,利用中点坐标公式,构建方程求出a、b即可;
    【详解】
    解:如图,连接AC、BD交于点O′.
    ∵四边形ABCD是平行四边形,
    ∴AO′=O′C,BO′=O′D,
    ∵A(3,a),B(2,2),C(b,3),D(8,6),
    ∴,
    ∴a=5,b=7,
    ∴a+b=12,
    故答案为:12
    此题考查坐标与图形的性质,解题关键在于构建方程求出a、b
    13、二
    【解析】
    根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
    【详解】
    解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
    ∴这条直线一定不经过第二象限.
    故答案为:二
    此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) ∠DGC=45°; (2) ∠DGC=45°不会变化; (3) 四边形AGFM是正方形
    【解析】
    (1)根据对称性及正方形性质可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度数;
    (2)由(1)知△DFC为等腰三角形,得出DF=DC,求出∠DFC=45º+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45º;
    (3)证明FG=MF=MA=AG,∠AGF=90º,即可得出结论.
    【详解】
    (1)△FDE与ADE关于DE对称
    ∴△FDE≌△ADE
    ∴∠FDE=∠ADE=15º,AD=FD
    ∴∠ADF=2∠FDE=30º
    ∵ABCD为正方形
    ∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90º
    ∴∠FDC=∠ADC-∠ADF=60º
    ∴△DFC为等边三角形
    ∴∠DFC=60º
    ∵∠DFC为△DGF外角
    ∴∠DFC=∠FDE+∠DGC
    ∴∠DGC=∠DFC-∠FDE=60-15º=45º
    (2)不变.
    证明: 由(1)知△DFC为等腰三角形,DF=DC
    ∴∠DFC=∠DCF= (180º-∠CDF) =90º-∠CDF①
    ∵∠CDF=90º-∠ADF=90º-2∠EDF②
    将②代入①得∠DFC=45º+∠EDF
    ∵∠DFC=∠DGC+∠EDF
    ∴∠DGC=45º
    (3)四边形AMFG为正方形.
    证明: ∵M为Rt△ADE中斜边DE的中点
    ∴AM=DE
    ∵M为Rt△FED中斜边DE的中点
    ∴FM=DE=AM=MD
    由(1)知△AED≌△FED ∴AD=DF,∠ADG=∠FDG
    △ADG与△FDG中,
    AD=DF, ∠ADG=∠FDG,DG=DG
    ∴△ADG≌△FDG,
    由(2)知∠DGC=45º
    ∴∠DGA=∠DGF=45º,AG=FG, ∠AGF=∠DGA+∠DGF=90º
    ∵DB为正方形对角线,
    ∴∠ADB=∠45º,
    ∵∠ADG=∠GDF=∠ADB=22.5º
    ∵DM=FM
    ∴∠GDF=∠MFD=22.5º
    ∵∠GMF=∠GDF+∠MFD=45º
    ∴∠GMF=∠DGF=45º
    ∴MF=FG
    ∴FG=MF=MA=AG,∠AGF=90º
    ∴四边形AMFG为正方形。
    本题主要考查了正方形的性质与判定. 解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
    15、见解析.
    【解析】
    参考小东同学的做法,可得新正方形的边长为,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.
    【详解】
    解:所画图形如图所示.
    此题主要考查对正方形与三角形之间关系的灵活掌握.
    16、(1)72;(2)见解析.
    【解析】
    (1)由得AB=CD,AD=BC,AB∥CD,则∠BAG=∠ACE,由得∠ACE+∠EAC=90°,则∠BAG+∠EAC=∠BAE =90°,由,可证得∠AFB=∠ACE,又因为BF=BC,可得BF=AC,可证△ABF≌△EAC,则AB=AE,的面积=AE∙CD=,在Rt△ABE中,由BE=12即可求得;
    (2)由(1)知:△ABF≌△EAC,得△EAD≌△EAC,设CE=x,则AB=CD=2x,BF=AD=x,根据面积法计算AG的长,作高线GH,利用三角函数分别得EH和GH的长,利用勾股定理计算EG的长,代入结论化简可得结论.
    【详解】
    (1)解:∵,
    ∴AB=CD,AD=BC,AB∥CD,
    ∴∠BAG=∠ACE,
    ∵,
    ∴∠ACE+∠EAC=90°,
    ∴∠BAG+∠EAC=∠BAE =90°,
    ∵,,
    ∴∠AFB=∠ACE,∠AEC =∠BAE =90°,
    ∵BF=BC,,
    ∴BF=AC,
    ∴△ABF≌△EAC,
    ∴AB=AE,
    ∴的面积=AE∙CD=,
    在Rt△ABE中, BE=12
    ∴2= =72,
    ∴的面积=72;
    (2)证明:由(1)知:△ABF≌△EAC,
    ∵BF=BC=AD,
    ∴△EAD≌△EAC,
    ∴AF=DE=CE,AE=AB=2CE,
    设CE=x,则AB=CD=2x,BF=AD=x,,
    S△ABF=BF•AG=AF•AB,
    x•AG=x•2x,
    ∴AG=x,
    ∴CG=x-x=x,
    过G作GH⊥CD于H,
    sin∠ECG== ,
    ∴GH=x,
    cs∠ECG== ,
    CH=x,
    ∴EH=x-x=,
    ∴EG== = ,
    ∴= = ,
    ∴GE=AG.
    故答案为(1)72;(2)见解析.
    本题考查平行四边形的性质、直角三角形的判定和性质,勾股定理、三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形,熟练掌握勾股定理与三角函数定义.
    17、【发现与证明】结论1:见解析,结论1:见解析;【应用与探究】AC的长为或1.
    【解析】
    【发现与证明】由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA= (180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;
    【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.
    【详解】
    【发现与证明】:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠EAC=∠ACB,
    ∵△ABC≌△AB′C,
    ∴∠ACB=∠ACB′,BC=B′C,
    ∴∠EAC=∠ACB′,
    ∴AE=CE,
    即△ACE是等腰三角形;
    ∴DE=B′E,
    ∴∠CB′D=∠B′DA=11(180°−∠B′ED),
    ∵∠AEC=∠B′ED,
    ∴∠ACB′=∠CB′D,
    ∴B′D∥AC;
    【应用与探究】:分两种情况:①如图1所示:
    ∵四边形ACDB′是正方形,
    ∴∠CAB′=90°,
    ∴∠BAC=90°,
    ∵∠B=45°,
    ∴AC=;
    ②如图1所示:AC=BC=1;
    综上所述:AC的长为或1.
    本题考查平行四边形的性质, 正方形的性质, 翻折变换(折叠问题).【发现与证明】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论1:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明】的关键是根据已知条件找到对应角之间的关系. 【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA和AB’共线和BC和B’C两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.
    18、(1)①证明见解析;②;(1)ND1=NA1+CD1,证明见解析;(3)DN1+BM1=AM1+AN1,证明见解析.
    【解析】
    试题分析:(1)①由矩形的对角线互相平分得OA=OC,根据正方形的内角都是直角,得∠EOG=90°,用线段垂直平分线上的点到两端点的距离相等即可得;②用勾股定理计算即可;(1)连接BN,方法同(1)得到NB=ND,再用勾股定理即可;(3)延长GO交CD于H,连接MN,HN,先判断出BM=DH,OM=OH,再和前两个一样,得出MN=NH,再用勾股定理即可.
    解:(1)①∵四边形ABCD是矩形,∴OA=OC,
    ∵四边形EFGO为正方形,∴∠EOG=90°,
    ∴NC=NA;
    ②由①得,NA=NC=4,DN=1,
    根据勾股定理得CD==;
    (1)结论:ND1=NA1+CD1,连接NB,
    ∵四边形ABCD是矩形,∴OB=OD,AB=CD,
    ∵四边形EFGO为正方形,∴∠EOG=90°,
    ∴ND=NB.
    根据勾股定理得NB1=NA1+AB1=NA1+CD1=ND1;
    (3)结论AN1+AM1=DN1+BM1,
    延长GO交CD于H,连接MN,HN,
    ∵四边形ABCD是矩形,
    ∴OB=OD,∠OBM=∠ODH,
    又∵∠BOM=∠DOH,
    ∴△BOM≌△DOH,
    ∴BM=DH,OM=OH,
    ∵四边形EFGO是正方形,
    ∴∠EOG=90°,
    ∴MN=NH,
    在Rt△NDH中,NH1=DN1+DH1=DN1+BM1,
    在Rt△AMN中,MN1=AM1+AN1,
    ∴DN1+BM1=AM1+AN1.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、62°
    【解析】
    证明≌,根据全等三角形的性质得到AO=CO,根据菱形的性质有:AD=DC,根据等腰三角形三线合一的性质得到DO⊥AC,即∠DOC=90°.根据平行线的性质得到∠DCA=28°,根据三角形的内角和即可求解.
    【详解】
    四边形ABCD是菱形,
    AD//BC,

    在与中,

    ≌;
    AO=CO,
    AD=DC,
    ∴DO⊥AC,
    ∴∠DOC=90°.
    ∵AD∥BC,
    ∴∠BAC=∠DCA.
    ∵∠BAC=28°,∠BAC=∠DCA.,
    ∴∠DCA=28°,
    ∴∠ODC=90°-28°=62°.
    故答案为62°
    考查菱形的性质,等腰三角形的性质,平行线的性质,三角形的内角和定理等,比较基础,数形结合是解题的关键.
    20、
    【解析】
    试题分析:∵,,
    ∴,
    即7*(6*3)=,
    考点:算术平方根.
    21、﹣1≤x<1.
    【解析】
    先根据题意得出关于x的不等式组,求出x的取值范围即可.
    【详解】
    解:根据题意,得:
    解不等式①,得:x<1,
    解不等式②,得:x≥-1,
    所以-1≤x<1,
    故答案为:-1≤x<1.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    22、
    【解析】
    把a1,a2,a3代入代数式计算,找出规律,根据规律计算.
    【详解】
    a1=,


    ……,
    2019÷3=673,
    ∴a2019=-1,
    故答案为:-1.
    本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.
    23、4cm
    【解析】
    在▱ABCD中
    ∵BC=AD=6cm,AO=CO,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴AC==8cm,
    ∴AO=AC=4cm;
    故答案为4cm.
    二、解答题(本大题共3个小题,共30分)
    24、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元
    【解析】
    (1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.
    (2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.
    【详解】
    (1)解: 设购进A款书包x个,则B款为(100−x)个,
    由题意得:30x+50(100−x)=3600,
    解之:x=70,
    ∴100-x=100-70=30
    答:A,B两款书包分别购进70和30个.
    (2)解: 由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,
    ∵−1<0,故w有最大值,
    函数的对称轴为:x=70,而60⩽x⩽90,
    故:当x=70时,w有最大值为400,
    答:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.
    考核知识点:二次函数y=a(x-h)2+k的性质,二次函数的实际应用-销售问题.
    25、(1)84 80 80 104;(2)小李.小王的优秀率为40%.小李的优秀率为80%;(3)小李,理由见解析
    【解析】
    试题分析:(1)根据平均数、中位数、众数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;根据表中的数据分别计算优秀率即可;(3)因为小李的成绩比小王的成绩稳定,且优秀率比小王的高,因此选小李参加比赛比较合适.
    试题解析:
    (1)84,80,80,104;
    (2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为×100%=40%.小李的优秀率为×100%=80%.
    (3)因为小李的成绩比小王的成绩稳定,且优秀率比小王的高,因此选小李参加比赛比较合适.
    26、(1)60;(2)见解析
    【解析】
    分析:(1)根据菱形的性质可得AB=BC,然后根据AB=AC,可得△ABC为等边三角形,继而可得出∠B=60°;
    (2)根据△ABC为等边三角形,同理得出△ACD为等边三角形,然后根据E、F分别是BC、AD的中点,可得AE⊥BC,CF⊥AD,然后根据AF∥CE,即可判定四边形AECF为矩形.
    详解:(1)(1)因为四边形ABCD为菱形,
    ∴AB=BC,
    ∵AC=AB,
    ∴△ABC为等边三角形,
    ∴∠B=60°,;
    (2)证明:
    ∵四边形ABCD是菱形,
    ∴AD=BC,AD∥BC,
    ∵E.F分别是BC.AD的中点,
    ∴CE=BC,AF=AD,
    ∴AF=CE,
    ∴四边形AECF是平行四边形,
    ∵AB=AC,E是BC的中点,
    ∴AE⊥BC,即∠AEC=90°,
    ∴ 四边形AECF是矩形.
    点睛:本题考查了菱形的性质,等边三角形的判定与性质,矩形的判定,解答本题的关键是掌握菱形的四条边都相等的性质,注意掌握矩形的判定:有一个角是直角的平行四边形是矩形.
    题号





    总分
    得分
    批阅人
    第1次
    第2次
    第3次
    第4次
    第5次
    王同学
    60
    75
    100
    90
    75
    李同学
    70
    90
    100
    80
    80
    姓名
    平均成绩(分)
    中位数(分)
    众数(分)
    方差
    王同学
    80
    75
    75
    190
    李同学




    相关试卷

    山东省淄博市博山区2023-2024学年数学九年级第一学期期末考试试题含答案: 这是一份山东省淄博市博山区2023-2024学年数学九年级第一学期期末考试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将两个圆形纸片等内容,欢迎下载使用。

    山东省淄博市博山区2023-2024学年数学八年级第一学期期末联考模拟试题含答案: 这是一份山东省淄博市博山区2023-2024学年数学八年级第一学期期末联考模拟试题含答案,共6页。试卷主要包含了下列运算正确的是,若点A等内容,欢迎下载使用。

    2023年山东省淄博市博山区中考二模数学试题(含答案): 这是一份2023年山东省淄博市博山区中考二模数学试题(含答案),共11页。试卷主要包含了下列说法正确的是,下列关于二次函数y=3等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map