福建厦门第一中学2025届数学九年级第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A.1个B.2个C.3个D.4个
2、(4分)若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2B.3C.5D.7
3、(4分)如图,正方形的边长是4,在上,且,是边上的一动点,则周长的最小值是( )
A.3B.4C.5D.6
4、(4分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是( )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
5、(4分)下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.它们的逆命题是真命题的个数是( )
A.1个B.2个C.3个D.4个
6、(4分)如图,梯子靠在墙上,梯子的底端到墙根的距离为米,梯子的顶端到地面距离为米.现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于米,同时梯子的顶端下降至,那么的值( )
A.小于米B.大于米C.等于米D.无法确定
7、(4分)甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x个,那么所列方程是( )
A.B.C.D.
8、(4分)函数y=5x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两人面试和笔试的成绩如下表所示:
某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。
10、(4分)2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类 夜票(A) 平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)
11、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
12、(4分)一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.
13、(4分)分解因式:4-m2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).
(1)填空:________,________.
(2)补全频数分布直方图.
(3)该校有2000名学生估计这次活动中爱心捐款额在的学生人数.
15、(8分)计算:2÷×.
16、(8分)如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE.
求证:四边形AEBC是矩形;
过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若,,求的面积.
17、(10分)已知一次函数图象经过点(3 , 5) , (–4,–9)两点.
(1)求一次函数解析式.
(2)求图象和坐标轴围成三角形面积.
18、(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
20、(4分)已知是方程的一个根,_________________.
21、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.
22、(4分)如图,一架云梯长米,斜靠在一面墙上,梯子顶端离地面米,要使梯子顶端离地面米,则梯子的底部在水平面方向要向左滑动______米.
23、(4分)正八边形的一个内角的度数是 度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.
(1)求k的值与B点的坐标;
(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.
25、(10分)计算:
(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1
(2)(2a2+ab﹣2b2)(﹣ab)
26、(12分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
(1)求证:△AOE≌△COF;
(2)若AC平分∠HAG,求证:四边形AGCH是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.
2、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
3、D
【解析】
由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为使DN+MN最小的点,在Rt△BCM中利用勾股定理求出BM的长即可.
【详解】
解:∵四边形ABCD是正方形,
∴点B与点D关于直线AC对称,
连接BD,BM交AC于N′,连接DN′,则BM的长即为DN+MN的最小值,
又CM=CD−DM=4−1=3,
在Rt△BCM中,BM=,
故△DMN周长的最小值=5+1=6,
故选:D.
本题考查的是轴对称−最短路线问题及正方形的性质,根据点B与点D关于直线AC对称,可知BM的长即为DN+MN的最小值是解答此题的关键.
4、A
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.
平均成绩一样,小明的方差小,成绩稳定,
故选A.
本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析 容易题.失分原因是方差的意义掌握不牢.
5、B
【解析】
①的逆命题:两直线平行,同旁内角互补,正确,②的逆命题:周长相等的三角形不一定全等,错误③的逆命题:相等的角不一定是直角,错误④的逆命题:等角对等边,正确.
故选B
6、A
【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
【详解】
解:在直角三角形AOB中,因为OA=2,OB=7
由勾股定理得:AB=,
由题意可知AB=A′B′=,
又OA′=3,根据勾股定理得:OB′=2,
∴BB′=7-2<1.
故选A.
本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.
7、A
【解析】
甲每小时做x个零件,则乙每小时做(x+6)个零件,根据工作时间=工作总量÷工作效率结合甲做60个所用时间与乙做90个所用时间相等,即可得出关于x的分式方程,此题得解.
【详解】
甲每小时做x个零件,则乙每小时做(x+6)个零件,
依题意,得:,
故选A.
本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
8、B
【解析】
根据一次函数图像与k,b的关系得出结论.
【详解】
解:因为解析式y=5x﹣3中,k=5>0,图象过一、三象限,b=﹣3<0,图象过一、三、四象限,故图象不经过第二象限,故选B.
考查了一次函数图像的性质,熟练掌握一次函数图像与k,b的关系是解决本题的关键,也可以列表格画出图像判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙
【解析】
根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.
【详解】
甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
因为乙的平均分数最高,
所以乙将被录取.
故答案为乙.
此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
10、
【解析】
根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.
【详解】
解:由题可知,,
∴.
故答案为:.
本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.
11、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、1
【解析】
由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;
故答案是:1.
13、(2+m)(2−m)
【解析】
原式利用平方差公式分解即可.
【详解】
解:原式=(2+m)(2−m),
故答案为:(2+m)(2−m).
此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)详见解析;(3)估计这次活动中爱心捐款额在的学生有1200人
【解析】
(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;
(2)根据所求数据补全图形即可得;
(3)利用可以求得.
【详解】
(1)样本容量=3÷0.75%=40,∴,.
(2)补图如下.
(3)(人).
答:估计这次活动中爱心捐款额在的学生有1200人.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15、24.
【解析】
直接利用二次根式乘除运算法则计算得出答案.
【详解】
解:原式=4÷×3
=8×3
=24.
此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.
16、(1)见解析;(2).
【解析】
(1)根据平行四边形的性质得到AD∥BC,AD=BC,推出四边形AEBC是平行四边形,求得∠CAE=90°,于是得到四边形AEBC是矩形;
(2)根据三角形的内角和得到∠AGF=60°,∠EAF=60°,推出△AOE是等边三角形,得到AE=EO,求得∠GOF=∠GAF=30°,根据直角三角形的性质得到OG=2,根据三角形的面积公式即可得到结论.
【详解】
解:四边形ABCD是平行四边形,
,,
,
,,
四边形AEBC是平行四边形,
,
,
,
四边形AEBC是矩形;
,
,
,
,,
四边形AEBC是矩形,
,
是等边三角形,
,
,
,
,
,
,
,
,
的面积.
本题考查了矩形的判定和性质,平行四边形的性质,等边三角形的性质,直角三角形的性质,正确的识别图形是解题的关键.
17、y=2x-1 s=
解:(1)设一次函数的解析式是y=kx+b.
根据题意得:
解得:
则直线的解析式是:y=2x-1.
(2)在直线y=2x+1中,令x=0,解得y=1;
令y=0,解得:x=-
则求图象和坐标轴围成三角形面积为××1=
【解析】(1)利用待定系数法即可求得函数的解析式;
(2)求得函数与坐标轴的交点,即可求得三角形的面积.
18、(1)证明见解析(2)△CEF是直角三角形
【解析】
(1)由正方形的性质、等腰三角形的性质可得AB=CB,BE=BF,再通过等量相减,即可得出∠ABF=∠CBE,由SAS即可证出△ABF≌△CBE;
(2)求∠CEF=90°,即可证出△CEF是直角三角形.
证明:(1)∵四边形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS).
(2)△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙
【解析】
根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.
【详解】
解:∵0.5>0.4
∴S甲2>S乙2,则成绩较稳定的同学是乙.
故答案为:乙.
此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.
20、15
【解析】
一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即可对这个数代替未知数所得式子变形,即可求解.
【详解】
解:是方程的根,
.
故答案为:15.
本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是熟练掌握方程的解的定义,正确得到.
21、1cm
【解析】
根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5(cm),
∵DE⊥AB,DE=3(cm),
在Rt△ADE中,AE==4,
∴BE=AB−AE=5−4=1(cm),
故答案为1cm.
本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.
22、
【解析】
如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.
【详解】
如图,AB=DE=10,AC=6,DC=8,∠C =90°,
∴BC==8,
CE==6,
∴BE=BC-CE=2(米),
故答案为2.
本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.
23、135
【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.
【详解】
正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为: 1080°÷8=135°,
故答案为135.
二、解答题(本大题共3个小题,共30分)
24、(1)k=11,B(2,1);(1)D1(3,1)或D1(3,2)或D3(3,-1).
【解析】
(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=2代入反比例函数解析式求得相应的y的值,即得点B的坐标;
(1)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.
【详解】
(1)把点A(3,4)代入y=(x>0),得
k=xy=3×4=11,
故该反比例函数解析式为:y=.
∵点C(2,0),BC⊥x轴,
∴把x=2代入反比例函数y=,得
y==1.
则B(2,1).
综上所述,k的值是11,B点的坐标是(2,1).
(1)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.
∵A(3,4)、B(2,1)、C(2,0),
∴点D的横坐标为3,yA-yD=yB-yC即4-yD=1-0,故yD=1.
所以D(3,1).
②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.
∵A(3,4)、B(2,1)、C(2,0),
∴点D的横坐标为3,yD′-yA=yB-yC即yD-4=1-0,故yD′=2.
所以D′(3,2).
③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.
∵A(3,4)、B(2,1)、C(2,0),
∴xD″-xB=xC-xA即xD″-2=2-3,故xD″=3.
yD″-yB=yC-yA即yD″-1=0-4,故yD″=-1.
所以D″(3,-1).
综上所述,符合条件的点D的坐标是:(3,1)或(3,2)或(3,-1).
此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(1)题时,采用了“数形结合”和“分类讨论”的数学思想.
25、 (1)2;(2)−a1b−a2b2+ab1.
【解析】
(1)根据0次幂和负整数指数幂,即可解答.
(2)根据单项式乘以多项式,即可解答.
【详解】
(1)(1.12﹣π)0+(﹣)﹣2﹣2×2﹣1
=1+2-2×
=1+2-1
=2.
(2)(2a2+ab-2b2)(-ab)
=−a1b−a2b2+ab1.
本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.
26、 (1)见解析;(2) 见解析.
【解析】
(1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
(2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵BE=DF,∴OE=OF.
在△AOE与△COF中,
∴△AOE≌△COF(SAS).
(2)由(1)得△AOE≌△COF,
∴∠OAE=∠OCF,∴AE∥CF.
又∵AH∥CG,∴四边形AGCH是平行四边形.
∵AC平分∠HAG,∴∠HAC=∠GAC.
∵AH∥CG,∴∠HAC=∠GCA,
∴∠GAC=∠GCA,∴CG=AG,
∴□AGCH是菱形.
本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.
题号
一
二
三
四
五
总分
得分
候选人
甲
乙
测试成绩(百分制)
面试成绩
86
92
笔试成绩
90
83
捐款额(元)
频数
百分比
3
7.5%
7
17.5%
a
b
10
25%
6
15%
总计
100%
福建厦门双十中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份福建厦门双十中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建厦门第一中学2025届数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份福建厦门第一中学2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建厦门大同中学2024年九年级数学第一学期开学复习检测试题【含答案】: 这是一份福建厦门大同中学2024年九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。