福建厦门华侨中学2024-2025学年九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
A.(1,2)B.(2,1)C.(2,3)D.(1,3)
2、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC
3、(4分)下列调查中,适宜采用普查方式的是( )
A.调查一批新型节能灯泡的使用寿命
B.调查常熟市中小学生的课外阅读时间
C.对全市中学生观看电影《厉害了,我的国》情况的调查
D.对卫星“张衡一号”的零部件质量情况的调查
4、(4分)下列等式从左到右的变形是因式分解的是()
A.
B.
C.
D.
5、(4分)宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为( )
A.1.2×10﹣7米B.1.2×107米C.1.2×10﹣6米D.1.2×106米
6、(4分)若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记,则当m<0时,a的取值范围是( )
A.a<0B.a>0C.a<-1D.a>-1
7、(4分)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )
A.1B.2C.3D.4
8、(4分)如图,过点的一次函数的图象与正比例函数的图象相交于点则这个一次函数的解析式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.
10、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
11、(4分)(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .
12、(4分)计算-的结果是_________.
13、(4分)已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).
(1)求此直线和双曲线的表达式;
(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.
15、(8分)先化简,再求值:,其中x是不等式的负整数解.
16、(8分)对于实数a,b,定义运算“*”,a*b=例如4*1.因为4>1,所以4*1=41-4×1=8,若x1、x1是一元二次方程x1-9x+10=0的两个根,则x1*x1=__.
17、(10分)如图,▱ABOC放置在直角坐标系中,点A(10,4),点B(6,0),反比例函数y=(x>0)的图象经过点C.
(1)求该反比例函数的表达式.
(2)记AB的中点为D,请判断点D是否在该反比例函数的图象上,并说明理由.
(3)若P(a,b)是反比例函数y=的图象(x>0)的一点,且S△POC<S△DOC,则a的取值范围为_____.
18、(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中、、.
(1)将沿轴方向向左平移6个单位,画出平移后得到的;
(2)将绕着点顺时针旋转90°,画出旋转后得到的,、、的对应点分别是、、;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
20、(4分)分解因式_____.
21、(4分)计算: =______________
22、(4分)已知分式,当x__________时,分式无意义?当x____时,分式的值为零?当x=-3时,分式的值为_____________.
23、(4分)计算6-15的结果是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,是的中线,,交于点,是的中点,连接.
(1)求证:四边形是平行四边形;
(2)若四边形的面积为,请直接写出图中所有面积是的三角形.
25、(10分)已知一次函数y=﹣x+1.
(1)在给定的坐标系中画出该函数的图象;
(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.
26、(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
【详解】
∵关于x,y的二元一次方程组的解为,
∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
故选A.
本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
2、C
【解析】
矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.
所以选项A,B,D正确,C错误.
故选C.
3、D
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
A.调查一批新型节能灯泡的使用寿命适合抽样调查;
B.调查盐城市中小学生的课外阅读时间适合抽样调查;
C.对全市中学生观看电影《流浪地球》情况的调查适合抽样调查;
D.对量子通信卫星的零部件质量情况的调查必须进行全面调查,
故选D.
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、C
【解析】
直接利用因式分解的定义分析得出答案.
【详解】
解:A. ,是单项式乘以单项式,故此选项错误;
B. ,从左到右的变形是整式的乘法,故此选项错误;
C. ,从左到右的变形是因式分解,故此选项正确;
D. ,没有分解成几个整式的积的形式,不是因式分解,故此项错误。
故选:C
本题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.
5、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:0.00000012米=1.2×10﹣7米,故答案为A。
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
∵A(x1,y1)、B(x2,y2)是一次函数图象上的不同的两点,,
∴该函数图象是y随x的增大而减小,
∴a+1<0,
解得a<-1,
故选C.
此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.
7、D
【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.
【详解】
∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形.
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD=2,
∴∠2=∠1.
∵∠1=∠2,
∴∠1=∠2=∠1.
∵∠ABC=90°,
∴∠1+∠2+∠1=90°,
∴∠1=∠2=∠1=10°,
∴BE=AE,AC=2AB.本答案正确;
∴BE=1,
在Rt△ABE中,由勾股定理,得
AB=.本答案正确;
∵O是AC的中点,∠ABC=90°,
∴BO=AO=CO=AC.
∵∠1=∠2=∠1=10°,
∴∠BAO=60°,
∴△ABO为等边三角形.
∵∠1=∠2,
∴AE⊥BO.本答案正确;
∵S△ADC=S△AEC=,
∵CE=2,BE=1,
∴CE=2BE,
∴S△ACE=,
∴S△ACE=2S△ABE,
∴S△ADC=2S△ABE.本答案正确.
∴正确的个数有4个.
故选D.
本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键
8、A
【解析】
根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.
【详解】
解:∵B点在正比例函数y=2x的图象上,横坐标为1,
∴y=2×1=2,
∴B(1,2),
设一次函数解析式为:y=kx+b,
∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),
∴可得出方程组 ,解得 ,
则这个一次函数的解析式为y=-x+3,
故选:A.
此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.
【详解】
作AE⊥BC,
因为
所以,AE=AB=×4 =2.
所以,平行四边形的面积=BC×AE=5x2=10.
故答案为10
本题考核知识点:直角三角形. 解题关键点:熟记含有30〬角的直角三角形的性质.
10、十
【解析】
根据正多边形的外角和为360°,除以每个外角的度数即可知.
【详解】
解:∵正多边形的外角和为360°,
∴正多边形的边数为,
故答案为:十.
本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
11、P(5,5)或(4,5)或(8,5)
【解析】
试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:
(5)如图所示,PD=OD=4,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=4-5=4,
∴此时点P坐标为(4,5);
(4)如图所示,OP=OD=4.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△POE中,由勾股定理得: OE=,
∴此时点P坐标为(5,5);
(5)如图所示,PD=OD=4,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=4+5=8,
∴此时点P坐标为(8,5).
综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).
考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.
12、2
【解析】
先利用算术平方根和立方根进行化简,然后合并即可.
【详解】
解:原式=4-2=2
故答案为:2
本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.
13、
【解析】
解:如图,取AB的中点D,连接OD、CD,
∵正三角形ABC的边长为a,
,
在△ODC中,OD+CD>OC,
∴当O、D、C三点共线时OC最长,
最大值为.
三、解答题(本大题共5个小题,共48分)
14、 (1)直线的解析式为y=2x+2,反比例函数的解析式为y=;(2)M(﹣3,0)或(2,0).
【解析】
(1)利用待定系数法即可解决问题;
(2)设M(a,0),表示出P(a,2a+2),Q(a,),根据PQ=2QD,列方程|2a+2-|=|2×|,解得a=2,a=-3,即可得到结果.
【详解】
(1)∵y=2x+m与(n≠0)交于A(1,4),
∴,
∴,
∴直线的解析式为y=2x+2,反比例函数的解析式为.
(2)设M(a,0),
∵l∥y轴,
∴P(a,2a+2),Q(a,),
∵PQ=2QM,
∴|2a+2﹣|=|2×|,
解得:a=2或a=﹣3,
∴M(﹣3,0)或(2,0).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
15、;3
【解析】
先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x的值求值.
【详解】
解:原式=
解得,负整数解为
将代入原式=
16、4
【解析】
试题分析:先求出方程的两个根,再利用新定义的运算法则计算,计算时需要分类讨论.
试题解析:
x1-7x+11=0,(x-4)(x-3)=0,
x-4=0或x-3=0,∴x1=4,x1=3或x1=3,x1=4.
当x1=4,x1=3时,x1*x1=41-4×3=4,
当x1=3,x1=4时,x1*x1=3×4-41=-4,∴x1*x1的值为4或-4.
点睛:定义新运算是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特殊的运算符号,如:*、△、⊙,等,解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算.
17、 (1)y=;(2)D点在反比例函数图象上;(3)2<a<4或4<a<8
【解析】
根据题意可得,可得C点坐标,则可求反比例函数解析式
根据题意可得D点坐标,代入解析式可得结论.
由图象可发现,,的面积和等于▱ABCD的面积一半,即,分点P在OC上方和下方讨论,设,用a表示的面积可得不等式,可求a的范围.
【详解】
解:(1)∵ABOC是平行四边形
∴AC=BO=6
∴C(4,4)
∵反比例函数y=(x>0)的图象经过点C.
∴4=
∴k=16
∴反比例函数解析式y=
(2)∵点A(10,4),点B(6,0),
∴AB的中点D(8,2)
当x=8时,y==2
∴D点在反比例函数图象上.
(3)根据题意当点P在OC的上方,作PF⊥y轴,CE⊥y轴
设P(a,)
S△COD=S▱ABOC﹣S△ACD﹣S△OBD
∴S△COD=S▱ABOC=12
∵S△POC<S△COD
∴,
∴a>2或a<﹣8(舍去)
当点P在OC的下方,则易得4<a<8
综上所述:2<a<4或4<a<8
本题考查了待定系数法解反比例函数解析式,反比例函数的系数的几何意义,平行四边形的性质,设,根据题意列出关于a的不等式是本题关键.
18、(1)的如图所示. 见解析;(2)的如图所示. 见解析.
【解析】
(1)分别画出A、B、C的对应点A1、B1、C1即可;
(2)分别画出A、B、C的对应点A2、B2、C2即可.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所示.
考查作图-平移变换,作图-旋转变换等知识,解题的关键是熟练掌握基本知识.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
20、
【解析】
提取公因数4,再根据平方差公式求解即可.
【详解】
故答案为:
本题考查了因式分解的问题,掌握平方差公式是解题的关键.
21、2
【解析】
先将二次根式化为最简,然后合并同类二次根式即可.
【详解】
解:原式=.
故答案为:2.
本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.
22、 -5
【解析】
根据分式无意义的条件是分母为0可得第一空,根据分子为0,分母不为0时分式的值为0可得第二空,将的值代入分式中即可求值,从而得出第三空的答案.
【详解】
根据分式无意义的条件可知,当时,分式无意义,此时;
根据分式的值为0的条件可知,当时,分式的值为0,此时;
将 x的值代入分式中,得;
故答案为: .
本题主要考查分式无意义,分式的值为0以及分式求值,掌握分式无意义,分式的值为0的条件是解题的关键.
23、6-
【解析】
直接化简二次根式进而得出答案.
【详解】
解:原式=6-15×,
=6-.
故答案为:6-.
此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2),,,
【解析】
(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD是△ABC的中线,
∴BD=CD,
∵AE∥BC,
∴∠AEF=∠DBF,
在△AFE和△DFB中,
,
∴△AFE≌△DFB(AAS),
∴AE=BD,
∴AE=CD,
∵AE∥BC,
∴四边形ADCE是平行四边形;
(2)∵四边形ABCE的面积为S,
∵BD=DC,
∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,
∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
25、(1)见解析;(2)y1>y2.
【解析】
(1)根据两点确定一条直线作出函数图象即可;
(2)根据y随x的增大而减小求解.
【详解】
(1)令y=0,则x=2
令x=0,则y=1
所以,点A的坐标为(2,0)
点B的坐标为(0,1)
画出函数图象如图:
;
(2)∵一次函数y=﹣x+1中,k=-<0,∴y随x的增大而减小
∵﹣1<3
∴y1>y2.
本题考查了一次函数图象上点的坐标特征,一次函数图象,熟练掌握一次函数与坐标轴的交点坐标的求解方法是解题的关键.
26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
题号
一
二
三
四
五
总分
得分
2024年福建省福州华侨中学九上数学开学监测模拟试题【含答案】: 这是一份2024年福建省福州华侨中学九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年云南师范大实验中学九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年云南师范大实验中学九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限D.两支图象关于原点对称,解答题等内容,欢迎下载使用。
2024-2025学年云南省重点中学九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年云南省重点中学九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

