福建厦门2023-2024学年九上数学期末综合测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )
A.1B.2C.D.
2.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )
A.12πB.24πC.36πD.48π
3.如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A.2B.C.D.
4.下列方程中,是一元二次方程的是( )
A.B.C.D.
5.下列四幅图案,在设计中用到了中心对称的图形是( )
A.B.C.D.
6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为( )
A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)
7.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )
A.B.C.D.
8.sin 30°的值为( )
A.B.C.1D.
9.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )
A.16块,16块B.8块,24块
C.20块,12块D.12块,20块
10.为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九年级学生中考体育水平大概在( )
A.40分B.200分C.5000D.以上都有可能
11.如图,矩形ABCD是由三个全等矩形拼成的,AC与DE、EF、FG、HG、HB分别交于点P、Q、K、M、N,设△EPQ、△GKM、△BNC的面积依次为S1、S2、S1.若S1+S1=10,则S2的值为( ).
A.6B.8
C.10D.12
12.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为( )
A.B.8C.10D.16
二、填空题(每题4分,共24分)
13.已知(x、y、z均不为零),则_____________.
14.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30 km时,甲的行驶时间为1 h、3 h、h;其中正确的是__________.
15.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.
16.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.
17.化简:______.
18.如图,直角三角形的直角顶点在坐标原点,若点在反比例函数的图像上,点在反比例函数的图像上,且,则_______.
三、解答题(共78分)
19.(8分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.
(1)求这个二次函数的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.
(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.
20.(8分)解不等式组:
21.(8分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.
(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;
(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;
(3)在(2)的条件下,若AB=6,求CF的最大值.
22.(10分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.
(1)求k的值;
(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;
(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.
23.(10分)已知:如图,在矩形中,点为上一点,连接,过点作于点,与相似吗?请说明理由.
24.(10分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
25.(12分)定义:如果函数C:()的图象经过点(m,n)、(-m,-n),那么我们称函数C为对称点函数,这对点叫做对称点函数的友好点.
例如:函数经过点(1,2)、(-1,-2),则函数是对称点函数,点(1,2)、(-1,-2)叫做对称点函数的友好点.
(1)填空:对称点函数一个友好点是(3,3),则b= ,c= ;
(2)对称点函数一个友好点是(2b,n),当2b≤x≤2时,此函数的最大值为,最小值为,且=4,求b的值;
(3)对称点函数()的友好点是M、N(点M在点N的上方),函数图象与y轴交于点A.把线段AM绕原点O顺时针旋转90°,得到它的对应线段A′M′.若线段A′M′与该函数的图象有且只有一个公共点时,结合函数图象,直接写出a的取值范围.
26.(12分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.
(1)求抛物线的解析式;
(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;
(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、D
4、D
5、D
6、C
7、B
8、B
9、D
10、A
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、②③
15、2.
16、
17、
18、
三、解答题(共78分)
19、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为( , )且△ACD面积的最大值 ;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形
点E的坐标是(1,4)或(-2,-5).
20、
21、(1)∠ADE=30°;(2)∠ADE=30°,理由见解析;(3)
22、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).
23、相似,见解析
24、1米.
25、(1)b=1,c=9;(2)b=0或b=或b=;(3) 或
26、(3);(3)R(3,3);(3)3或.
邗江实验2023-2024学年九上数学期末综合测试模拟试题含答案: 这是一份邗江实验2023-2024学年九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了下列命题正确的是,在平面直角坐标系中,点P,下列函数中, 是的反比例函数等内容,欢迎下载使用。
福建厦门市六中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份福建厦门市六中学2023-2024学年九上数学期末达标检测模拟试题含答案,共9页。
2023-2024学年福建厦门双十中学九上数学期末调研试题含答案: 这是一份2023-2024学年福建厦门双十中学九上数学期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,用配方法解方程时,应将其变形为等内容,欢迎下载使用。