终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题4.3 三角恒等变换(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题4.3 三角恒等变换(举一反三)(新高考专用)(教师版) 2025年高考数学一轮复习专练(新高考专用).docx
    • 学生
      专题4.3 三角恒等变换(举一反三)(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用).docx
    专题4.3 三角恒等变换(举一反三)(新高考专用)(教师版) 2025年高考数学一轮复习专练(新高考专用)第1页
    专题4.3 三角恒等变换(举一反三)(新高考专用)(教师版) 2025年高考数学一轮复习专练(新高考专用)第2页
    专题4.3 三角恒等变换(举一反三)(新高考专用)(教师版) 2025年高考数学一轮复习专练(新高考专用)第3页
    专题4.3 三角恒等变换(举一反三)(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)第1页
    专题4.3 三角恒等变换(举一反三)(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)第2页
    专题4.3 三角恒等变换(举一反三)(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题4.3 三角恒等变换(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用)

    展开

    这是一份专题4.3 三角恒等变换(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用),文件包含专题43三角恒等变换举一反三新高考专用教师版2025年高考数学一轮复习专练新高考专用docx、专题43三角恒等变换举一反三新高考专用学生版2025年高考数学一轮复习专练新高考专用docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    TOC \ "1-3" \h \u
    \l "_Tc28884" 【题型1 两角和与差的三角函数公式】 PAGEREF _Tc28884 \h 3
    \l "_Tc1738" 【题型2 两角和与差的三角函数公式的逆用及变形】 PAGEREF _Tc1738 \h 4
    \l "_Tc29145" 【题型3 辅助角公式的运用】 PAGEREF _Tc29145 \h 6
    \l "_Tc18438" 【题型4 角的变换问题】 PAGEREF _Tc18438 \h 8
    \l "_Tc25825" 【题型5 三角函数式的化简】 PAGEREF _Tc25825 \h 10
    \l "_Tc16349" 【题型6 给角求值】 PAGEREF _Tc16349 \h 11
    \l "_Tc11051" 【题型7 给值求值】 PAGEREF _Tc11051 \h 13
    \l "_Tc431" 【题型8 给值求角】 PAGEREF _Tc431 \h 15
    \l "_Tc19792" 【题型9 三角恒等变换的综合应用】 PAGEREF _Tc19792 \h 18
    1、三角恒等变换
    【知识点1 三角恒等变换思想】
    1.三角恒等变换思想——角的代换、常值代换、辅助角公式
    (1)角的代换
    代换法是一种常用的思想方法,也是数学中一种重要的解题方法,在解决三角问题时,角的代换作用
    尤为突出.
    常用的角的代换形式:
    ①=(+)-;
    ②=-(-);
    ③=[(+)+(-)];
    ④= [(+)-(-)];
    ⑤=(-)-(-);
    ⑥-=(-)+(-).
    (2)常值代换
    用某些三角函数值代换某些常数,使之代换后能运用相关的公式,我们把这种代换称为常值代换,其
    中要特别注意的是“1”的代换.
    (3)辅助角公式
    通过应用公式[或将形如
    (a,b都不为零)的三角函数式收缩为一个三角函数 [或].这种恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和收缩为一个
    三角函数,这种恒等变换称为收缩变换,上述公式也称为辅助角公式.
    【知识点2 三角恒等变换的应用技巧】
    1.两角和与差的三角函数公式的应用技巧
    (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.
    (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.
    2.两角和与差的三角函数公式的逆用及变形
    运用两角和与差的三角函数公式时,不但要熟悉公式的正用,还要熟悉公式的逆用及变形应用,如和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能拓展思路,培养从正向思维向逆向思维转化的能力.
    3.辅助角公式的运用技巧
    对asinx+bcsx化简时,辅助角的值如何求要清楚.
    4.角的变换问题的解题策略:
    (1)当“已知角”有两个时,“所求角”一般表示为两个"已知角"的和或差的形式;
    (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.
    (3)常见的角变换:,,,,等.
    【知识点3 三角恒等变换几类问题的解题策略】
    1.给值求值问题的解题思路
    给值求值问题一般是将待求式子化简整理,看需要求相关角的哪些三角函数值,然后根据角的范围求
    出相应角的三角函数值,代入即可.
    2.给角求值问题的解题思路
    给角求值问题一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角
    之间总有一定的关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除特殊角三角函数而得解.
    3.给值求角问题的解题思路
    给值求角问题一般先求角的某一三角函数值,再求角的范围,最后确定角.
    4.三角恒等变换的综合应用的解题策略
    三角恒等变换的综合应用的求解策略主要是将三角变换与三角函数的性质相结合,通过变换把函数化
    为f(x)=Asin(ωx+φ)+b的形式再研究其性质,解题时注意观察角、函数名、结构等特征,注意利用整体思想解决相关问题.
    【方法技巧与总结】
    1..
    2.降幂公式:,.
    3.,,.
    【题型1 两角和与差的三角函数公式】
    【例1】(2024·江西九江·三模)若2sinα+π3=csα−π3,则tanα−π6=( )
    A.−4−3B.−4+3C.4−3D.4+3
    【解题思路】设β=α−π6,则原等式可化为2sinβ+π2=csβ−π6,化简后求出tanβ即可.
    【解答过程】令β=α−π6,则α=β+π6,
    所以由2sinα+π3=csα−π3,
    得2sinβ+π2=csβ−π6,
    即2csβ=32csβ+12sinβ,
    即sinβ=4−3csβ,得tanβ=4−3,
    所以tanα−π6=tanβ=4−3,
    故选:C.
    【变式1-1】(2024·湖南·模拟预测)已知α∈π2,π,tan3π4−α=13,则sinα=( )
    A.255B.55C.223D.23
    【解题思路】根据差角公式可得tanα=−12,即可利用同角关系求解.`
    【解答过程】由tan3π4−α=13得tan3π4−α=tan3π4−tanα1+tan3π4tanα=13,解得tanα=−2,
    故sinα=−2csα,结合sin2α+cs2α=1,故sin2α=45
    由于α∈π2,π,故sinα= 255,
    故选:A.
    【变式1-2】(2024·安徽合肥·模拟预测)已知cs10°−α=cs50°−α+cs50°+α,则tanα=( )
    A.33B.−33C.3D.−3
    【解题思路】根据两角和差的余弦公式化简,再根据50°=60°−10°结合两角差的余弦公式化简即可得解.
    【解答过程】由cs10°−α=cs50°−α+cs50°+α,
    得cs10°csα+sin10°sinα=2cs50°csα,
    故sin10°sinα=2cs50°csα−cs10°csα
    所以tanα=2cs50°−cs10°sin10°
    =2cs60°−10°−cs10°sin10°
    =cs10°+3sin10°−cs10°sin10°=3.
    故选:C.
    【变式1-3】(2024·黑龙江哈尔滨·模拟预测)已知sinαsinα+π6=csαsinπ3−α,则tan2α+π4=( )
    A.2−3B.−2−3C.2+3D.−2+3
    【解题思路】由两角和差公式、二倍角公式逆用可得tan2α=3,进一步结合两角和的正切公式即可得解.
    【解答过程】由题意32sin2α+12sinαcsα=32cs2α−12sinαcsα,即32cs2α=12sin2α,
    即tan2α=3,所以tan2α+π4=tan2α+tanπ41−tan2αtanπ4=3+11−3=3+12−2=−2−3.
    故选:B.
    【题型2 两角和与差的三角函数公式的逆用及变形】
    【例2】(2024·四川·模拟预测)已知α,β,γ∈0,π2,若sinα+sinγ=sinβ,csβ+csγ=csα,则α−β=( )
    A.−π3B.π3C.−π6D.π6
    【解题思路】根据已知条件及同角三角函数的平方关系,利用两角差的余弦公式及三角函数的特殊值,注意角的范围即可求解.
    【解答过程】由sinα+sinγ=sinβ,csβ+csγ=csα,得sinα−sinβ=−sinγ,csα−csβ=csγ,
    ∴sinα−sinβ2+csα−csβ2=−sinγ2+cs2γ=1,即2−2sinαsinβ−2csαcsβ=1,
    ∴2−2csα−β=1,解得csα−β=12.
    又α,β,γ∈0,π2,
    ∴sinα−sinβ=−sinγ

    相关试卷

    专题5.4 复数(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用):

    这是一份专题5.4 复数(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用),文件包含专题54复数举一反三新高考专用教师版2025年高考数学一轮复习专练新高考专用docx、专题54复数举一反三新高考专用学生版2025年高考数学一轮复习专练新高考专用docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    专题2.7 函数与方程(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用):

    这是一份专题2.7 函数与方程(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用),文件包含专题27函数与方程举一反三新高考专用教师版2025年高考数学一轮复习专练新高考专用docx、专题27函数与方程举一反三新高考专用学生版2025年高考数学一轮复习专练新高考专用docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    专题2.6 函数的图象(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用):

    这是一份专题2.6 函数的图象(举一反三)(新高考专用)(含答案) 2025年高考数学一轮复习专练(新高考专用),文件包含专题26函数的图象举一反三新高考专用教师版2025年高考数学一轮复习专练新高考专用docx、专题26函数的图象举一反三新高考专用学生版2025年高考数学一轮复习专练新高考专用docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map