搜索
    上传资料 赚现金
    英语朗读宝

    北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】

    北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】第1页
    北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】第2页
    北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】

    展开

    这是一份北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不能判定四边形ABCD为平行四边形的题设是( )
    A.AB=CD,AB∥CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC
    2、(4分)要使分式有意义,则 x 的取值范围是( ).
    A.x≠±1B.x≠-1C.x≠0D.x≠1
    3、(4分)在中,,则的度数为( )
    A.B.C.D.
    4、(4分)方差是表示一组数据的
    A.变化范围B.平均水平C.数据个数D.波动大小
    5、(4分).一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度(厘米)与燃烧时间(时)的函数关系的图像是
    A.B.C.D.
    6、(4分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,根据这个规律探索可得,第100个点的坐标为
    A.B.C.D.
    7、(4分)下列式子中属于最简二次根式的是( )
    A.B.C.D.
    8、(4分)某工厂计划用两年时间使产值增加到目前的4倍,并且使第二年增长的百分数是第一年增长百分数的2倍,设第一年增长的百分数为x,则可列方程得( )
    A.(1+x)2=4B.x(1+2x+4x)=4
    C.2x(1+x)=4D.(1+x)(1+2x)=4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若实数a、b满足,则=_____.
    10、(4分)若在实数范围内有意义,则x的取值范围是_________.
    11、(4分)直线中,y随的减小而_______,图象经过______象限.
    12、(4分)若代数式有意义,则实数的取值范围是_________.
    13、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0
    (1)求证:无论k取何值,这个方程总有实数根;
    (2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
    15、(8分)解不等式组:,并把它的解集在数轴上表示出来。
    16、(8分)某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:
    (1)求y1与y2的函数关系式;
    (2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?
    (3)如果你是营业员,你会如何选择支付薪水的方式?为什么?
    17、(10分)如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
    (1)在这个变化过程中,自变量、因变量各是什么?
    (2)请将上述表格补充完整;
    (3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
    (4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
    18、(10分)已知某企业生产的产品每件出厂价为70元,其成本价为25元,同时在生产过程中,平均每生产一件产品有1 m3的污水排出,为达到排污标准,现有以下两种处理污水的方案可供选择.
    方案一:将污水先净化处理后再排出,每处理1 m3污水的费用为3元,并且每月排污设备损耗为24 000元.
    方案二:将污水排到污水厂统一处理,每处理1 m3污水的费用为15元,设该企业每月生产x件产品,每月利润为y元.
    (1)分别写出该企业一句方案一和方案二处理污水时,y与x的函数关系式;
    (2)已知该企业每月生产1 000件产品,如果你是该企业的负责人,那么在考虑企业的生产实际前提下,选择哪一种污水处理方案更划算?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.
    20、(4分)若,则的取值范围为_____.
    21、(4分)正比例函数的图象经过点(-1,2),则此函数的表达式为___________.
    22、(4分)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:,则成绩较稳定的是_______(填“甲”或“乙”).
    23、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
    (1)求证:四边形ADEF是平行四边形;
    (2)求证:∠DHF=∠DEF.
    25、(10分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为(分),所走的路程为(米),与之间的函数关系如图所示,
    (1)小明中途休息用了_______分钟.
    (2)小明在上述过程中所走的过程为________米
    (3)小明休息前爬山的平均速度和休息后爬山的平均速度各是多少?
    26、(12分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性
    的方案是________;
    方案一:调查八年级部分男生;
    方案二:调查八年级部分女生;
    方案三:到八年级每个班去随机调查一定数量的学生.
    (2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:
    ①本次调查学生人数共有_______名;
    ②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;
    ③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    A. ∵AB=CD,AB∥CD,
    ∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
    B. ∵∠A=∠C,∠B=∠D,
    ∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
    C. 由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;
    D. ∵AB=CD,AD=BC,
    ∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形
    故选C.
    本题考查平行四边形的判定.
    2、D
    【解析】
    根据分式的基本概念即可解答.
    【详解】
    由分式的基本概念可知,若分式有意义,则分母不为零,即,解得:x≠1.
    故选D.
    本题主要考查分式的基本概念,熟悉掌握是关键.
    3、D
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对角相等,易得∠C=∠A=38°.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠C=∠A=38°.
    故选:D.
    此题考查了平行四边形的性质:平行四边形的对角相等.
    4、D
    【解析】
    根据方差的意义进行求解即可得.
    【详解】
    方差是用来表示一组数据波动大小的量,
    故选D.
    本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    5、D
    【解析】
    燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t (0≤t≤4),图象是以(0,20),(4,0)为端点的线段.
    【详解】
    解:燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t (0≤t≤4),
    图象是以(0,20),(4,0)为端点的线段.
    故选:D.
    此题首先根据问题从图中找出所需要的信息,然后根据燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系h=20-5t (0≤t≤4),做出解答.
    6、D
    【解析】
    从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n的有n个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.
    【详解】
    在横坐标上,第一列有一个点,第二列有2个点第n个有n个点,
    并且奇数列点数对称而偶数列点数y轴上方比下方多一个,
    所以奇数列的坐标为;
    偶数列的坐标为,
    由加法推算可得到第100个点位于第14列自上而下第六行.
    代入上式得,即.
    故选D.
    本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.
    7、C
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    解:A、被开方数含分母,故A错误;
    B、被开方数含能开得尽方的因数或因式,故B错误;
    C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;
    D、被开方数含分母,故D错误;
    故选:C.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    8、D
    【解析】
    设第一年增长的百分数为x,则第二年增长的百分数为2x,根据“计划用两年时间使产值增加到目前的1倍”列出方程即可.
    【详解】
    解:设第一年增长的百分数为x,则第二年增长的百分数为2x,
    根据题意,得(1+x)(1+2x)=1.
    故选:D.
    此题主要考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣
    【解析】
    根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.
    10、x≥-1
    【解析】
    根据二次根式的性质即可求解.
    【详解】
    依题意得x+1≥0,
    解得x≥-1
    故填:x≥-1
    此题主要考查二次根式的性质,解题的关键是熟知根号内被开方数为非负数.
    11、减小 第一、三、四
    【解析】
    根据函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:直线,,
    随的减小而减小,函数图象经过第一、三、四象限,
    故答案为:减小,第一、三、四.
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    12、
    【解析】
    根据被开方数大于等于0列不等式求解即可.
    【详解】
    由题意得x-1≥0,
    解得x≥1.
    故答案为x≥1.
    本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
    13、8 P1(0,-4),P2(-4,-4),P3(4,4)
    【解析】
    解:如图
    ∵△AOE的面积为4,函数y=的图象过一、三象限,
    ∴S△AOE=•OE•AE=4,
    ∴OE•AE=8,
    ∴xy=8,
    ∴k=8,
    ∵函数y=2x和函数y=的图象交于A、B两点,
    ∴2x=,
    ∴x=±2,
    当x=2时,y=4,当x=-2时,y=-4,
    ∴A、B两点的坐标是:(2,4)(-2,-4),
    ∵以点B、O、E、P为顶点的平行四边形共有3个,
    ∴满足条件的P点有3个,分别为:
    P1(0,-4),P2(-4,-4),P3(4,4).
    故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).
    本题考查反比例函数综合题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)2.
    【解析】
    试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;
    (2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.
    试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,
    ∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,
    而(2k﹣3)2≥0,
    ∴△≥0,
    所以无论k取任何实数,方程总有两个实数根;
    (2)解:x2﹣(2k+1)x+4k﹣2=0,
    整理得(x﹣2)[x﹣(2k﹣1)]=0,
    ∴x1=2,x2=2k﹣1,
    当a=4为等腰△ABC的底边,则有b=c,
    因为b、c恰是这个方程的两根,则2=2k﹣1,
    解得k=,则三角形的三边长分别为:2,2,4,
    ∵2+2=4,这不满足三角形三边的关系,舍去;
    当a=4为等腰△ABC的腰,
    因为b、c恰是这个方程的两根,所以只能2k﹣1=4,
    则三角形三边长分别为:2,4,4,
    此时三角形的周长为2+4+4=2.
    所以△ABC的周长为2.
    15、-2

    相关试卷

    北京人大附中朝阳学校2024年数学九年级第一学期开学学业质量监测试题【含答案】:

    这是一份北京人大附中朝阳学校2024年数学九年级第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市人大附中朝阳学校数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2025届北京市人大附中朝阳学校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京朝阳区数学九上开学检测模拟试题【含答案】:

    这是一份2024年北京朝阳区数学九上开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map