2024年北京朝阳区数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于二次根式,以下说法不正确的是( )
A.它是一个无理数B.它是一个正数C.它是最简二次根式D.它有最小值为3
2、(4分)三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有( )
A.1个B.2个C.3个D.4个
3、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
4、(4分)下列关于变量的关系,其中不是的函数的是( )
A.
B.
C.
D.
5、(4分)如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为( )
A.B.C.D.
6、(4分)若关于x的不等式3x-2m≥0的负整数解为-1,-2,则m的取值范围是( )
A.B.C.D.
7、(4分)方程的二次项系数、一次项系数、常数项分别为( )
A.,,B.,,C.,,D.,,
8、(4分)下列图书馆的标志中,是中心对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.
10、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
11、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
12、(4分)因式分解:__________.
13、(4分)若,则的值为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点是边长为的正方形对角线上一个动点(与不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为,的面积为.
(1)判断的形状,并说明理由;
(2)求与之间的函数关系式,并写出定义域;
(3)当四边形是梯形时,求出的值.
15、(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.
(1)求证:△AEG是等腰直角三角形;
(2)求证:AG+CG=DG.
16、(8分)在矩形中,,,将沿着对角线对折得到.
(1)如图,交于点,于点,求的长.
(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.
17、(10分)王老师计划用36元购买若干袋洗衣液,恰遇超市降价促销,每袋洗衣液降价3元,因而王老师只用24元便可以购买到相同袋数的洗衣液.问这种洗衣液每袋原价是多少元?
18、(10分)阅读材料,解答问题:
(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在中,如果,,,,那么三者之间的数量关系是: .
(2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:
∵,
(用含的式子表示)
又∵ .
∴
∴
∴ .
(3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
20、(4分)有一组数据:2,5,5,6,7,这组数据的平均数为_____.
21、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.
22、(4分)如图,在平面直角坐标系中,与关于点位似,且顶点都在格点上,则位似中心的坐标是__________.
23、(4分)甲、乙两车从城出发匀速行驶至城在个行驶过程中甲乙两车离开城的距离(单位:千米)与甲车行驶的时间(单位:小时)之间的函数关系如图所示.则下列结论: ①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④在乙车行驶过程中.当甲、乙两车相距千米时,或,其中正确的结论是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接BO和FO.
(1)当点E为AB中点时,求EO的长度;
(2)求线段AO的取值范围;
(3)当EO⊥FO时,连接EF.求证:BE+DF>EF.
25、(10分)如图,中,是上的一点,若,,,,求的面积.
26、(12分)列方程解应用题
某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据最简二次根式的定义:被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.
【详解】
是一个非负数,是最简二次根式,最小值是3,
当时x=0,是有理数,故A错误;
故选A.
考查了最简二次根式,利用最简二次根式的性质是解题关键.
2、D
【解析】
试题解析:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;
②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;
③、82+152=289=172,∴能构成直角三角形,故本小题正确;
④、∵132+842=852,∴能构成直角三角形,故本小题正确.
故选D.
3、D
【解析】
根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AB=AE,
当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.
∴矩形ABCD的面积是:1×5=10cm1;
当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面积是:5×3=15cm1.
故矩形的面积是:10cm1或15cm1.
故选:D.
本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.
4、D
【解析】
根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.
【详解】
解:选项ABC中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;
只有选项D中,x取1个值,y有2个值与其对应,故y不是x的函数.
故选D.
此题主要考查了函数的定义,正确掌握函数定义是解题关键.
5、C
【解析】
如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.
【详解】
如图连接BD.
∵四边形ABCD是菱形,
∴AD=AB=8,
∵
∴△ABD是等边三角形,
∴BA=AD=8,
∵PE=ED,PF=FB,
∴
故选:C.
考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.
6、D
【解析】
解,得x≥,根据题意得,-3<≤-2,解得,故选D.
点睛:本题主要考查了一元一次不等式的解法,先用含m的式子表示出不等式的解集,再根据不等式的负整数解得到含m的式子的范围,即关于m的不等式组,解这个不等式组即可求解.
7、D
【解析】
首先把方程化为一般式,然后可得二次项系数、一次项系数、常数项.
【详解】
2x2-6x=9可变形为2x2-6x-9=0,
二次项系数为2、一次项系数为-6、常数项为-9,
故选:D.
此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;b叫做一次项系数;c叫做常数项.
8、C
【解析】
根据中心对称图形的概念判断即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、,
【解析】
根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,即可得出答案.
【详解】
∵四边形ABCD是矩形,
∴AO=CO,BO=DO,DC∥AB,DC=AB,
∴S△ADC=S△ABC=S矩形ABCD=×20=10,
∴S△AOB=S△BCO=S△ABC=×10=5,
∴S△ABO1=S△AOB=×5=,
∴S△ABO2=S△ABO1=,
S△ABO3=S△ABO2=,
S△ABO4=S△ABO3=,
∴S平行四边形AO4C5B=2S△ABO4=2×=,
平行四边形AOnCn+1B的面积为,
故答案为:;.
本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.
10、65°.
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=(180°-50°)=65°,
∴∠ECB=130°-65°=65°.
故答案为65°.
11、-1
【解析】
另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
【详解】
设另一个根为t,
根据题意得4+t=3,
解得t=-1,
即另一个根为-1.
故答案为-1.
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
12、
【解析】
先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式,
故答案为:
本题考查提公因式,熟练掌握运算法则是解题关键.
13、
【解析】
根据比例设a=2k,b=3k,然后代入比例式进行计算即可得解.
【详解】
∵,
∴设a=2k,b=3k,
∴ .
故答案为:
此题考查比例的性质,掌握运算法则是解题关键
三、解答题(本大题共5个小题,共48分)
14、(1)为等腰直角三角形,理由见解析;(2)y=;(3)
【解析】
(1)先证明,再证明四边形是矩形,再证明,可得,即可得为等腰直角三角形.
(2)由,,即可求得与之间的函数关系式.
(3)因为四边形是梯形时,得.求PF的长,需利用已知条件求AC,AP,CE的长,则即可得出答案.
【详解】
解:(1) 为等腰直角三角形,理由如下:
在正方形中,,
又,
由题意可得,,
过点作,与分别交于点,
在正方形中,
四边形是矩形,
在中,
又
为等腰直角三角形
(2)在中,,
在中,
为等腰直角三角形,
(3)在等腰直角三角形中,
,
当四边形是梯形时,只有可能,
此题考查全等三角形的判定与性质,函数表达式的求解,梯形的性质,解题关键在于综合运用考点,利用图形与函数的结合求解即可.
15、证明见解析
【解析】
试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;
(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG= GH,AG=DH,计算即可.
试题解析:
(1)证明:∵DE=EF,AE⊥DP,
∴AF=AD,
∴∠AFD=∠ADF,
∵∠ADF+∠DAE=∠PAE+∠DAE=90°,
∴∠AFD=∠PAE,
∵AG平分∠BAF,
∴∠FAG=∠GAP.
∵∠AFD+∠FAE=90°,
∴∠AFD+∠PAE+∠FAP=90°
∴2∠GAP+2∠PAE=90°,
即∠GAE=45°,
∴△AGE为等腰直角三角形;
(2)证明:作CH⊥DP,交DP于H点,
∴∠DHC=90°.
∵AE⊥DP,
∴∠AED=90°,
∴∠AED=∠DHC.
∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠ADE=∠DCH.
∵在△ADE和△DCH中,
,
∴△ADE≌△DCH(AAS),
∴CH=DE,DH=AE=EG.
∴EH+EG=EH+HD,
即GH=ED,
∴GH=CH.
∴CG=GH.
∵AG=EG,
∴AG=DH,
∴CG+AG=GH+HD,
∴CG+AG=(GH+HD),
即CG+AG=DG.
16、(1);(2)的面积是.
【解析】
(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;
(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得
MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC
∴AC==5,
∵将Rt△ABC沿着对角线AC对折得到△AMC.
∴∠BCA=∠ACE,
∵AD∥BC
∴∠DAC=∠BCA
∴∠EAC=∠ECA
∴AE=EC
∵EC2=ED2+CD2,
∴AE2=(4−AE)2+9,
∴AE= ,
∵S△AEC=×AE×DC=×AC×EF,
∴×3=5×EF,
∴EF=;
(2)如图所示:
∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,
∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,
∵AB∥CD
∴∠BAC=∠ACD
∴∠BAC=∠ACD=∠CAM=∠ACN
∴∠BAM=∠DCN,且BA=AM=CD=CN
∴△BAM≌△DCN(SAS)
∴BM=DN
∵∠BAM=∠DCN
∴∠BAM−90°=∠DCN−90°
∴∠MAD=∠BCN,且AD=BC,AM=CN
∴△AMD≌△CNB(SAS)
∴MD=BN,且BM=DN
∴四边形MDNB是平行四边形
连接BD,
由(1)可知:∠EAC=∠ECA,
∵∠AMC=∠ADC=90°
∴点A,点C,点D,点M四点共圆,
∴∠ADM=∠ACM,
∴∠ADM=∠CAD
∴AC∥MD,且AC⊥DN
∴MD⊥DN,
∴四边形BNDM是矩形
∴∠BND=90°
∵S△ADC=×AD×CD=×AC×DF
∴DF=
∴DN=
∵四边形ABCD是矩形
∴AC=BD=5,
∴BN=
∴四边形BMDN的面积=BN×DN=×=.
本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM是矩形是本题的关键.
17、这种洗衣液每袋原价是9元.
【解析】
设这种洗衣液每袋原价是x元,则现价为(x-3)元,根据数量=总价÷单价结合降价后24元钱购买的洗衣液袋数等于降价前36元购买的洗衣液袋数,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:设这种洗衣液每袋原价是元,则现价为元,
依题意,得:,
解得:,
经检验,是原分式方程的解,且符合题意.
答:这种洗衣液每袋原价是9元.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
18、(1);(2);正方形ABCD的面积;四个全等直角三角形的面积正方形CFGH的面积;;(2)2.
【解析】
(1)根据勾股定理解答即可;
(2)根据题意、结合图形,根据完全平方公式进行计算即可;
(2)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.
【详解】
解:(1)在中,,,,,
由勾股定理得,,
故答案为:;
(2),
又正方形的面积四个全等直角三角形的面积的面积正方形CFGH的面积,
.
.
,
故答案为:;正方形的面积;四个全等直角三角形的面积的面积正方形CFGH的面积;;
(2)设,则,
由折叠的性质可知,,
在中,,
则,
解得,,
则PN的长为2.
本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由直线与直线平行,可知k=1,然后把代入中即可求解.
【详解】
∵直线与直线平行,
∴k=1,
把代入,得
1+b=4,
∴b=1,
∴.
故答案为:.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
20、1.
【解析】
把给出的这1个数据加起来,再除以数据个数1,就是此组数据的平均数.
【详解】
解:(2+1+1+6+7)÷1
=21÷1
=1.
答:这组数据的平均数是1.
故答案为:1.
此题主要考查了平均数的意义与求解方法,关键是把给出的这1个数据加起来,再除以数据个数1.
21、乙
【解析】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差,
∴乙的成绩比较稳定.
故答案为乙.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
22、
【解析】
根据位似中心的概念,直接连接对应的三点得到三条线,三条线的交点即为位似中心,读出坐标即可
【详解】
如图,连接AA’,BB’,CC’,三线的交点即为P点
读出P的坐标为
本题考查位似中心,能够找到位似中心是本题解题关键
23、①②
【解析】
观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,进而得出答案.
【详解】
由图象可知,A. B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,
∴①②都正确;
设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得,k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y乙=100t−100,
令y甲=y乙可得:60t=100t−100,
解得t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,
∴③不正确;
令|y甲−y乙|=50,可得|60t−100t+100|=50,即|100−40t|=50,
当100−40t=50时,可解得t=,
当100−40t=−50时,可解得t=,
又当t=时,y甲=50,此时乙还没出发,
当t=时,乙到达B城,y甲=250;
综上可知当t的值为或或或t=时,两车相距50千米,
∴④不正确;
综上,正确的有①②,
故答案为:①②
本题考查了函数图像的实际应用,准确从图中获取信息并进行分析是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)1<AO<4;(3)见解析.
【解析】
(1) O是中点,E是中点,所以OE=BC=;
(2) 在△ACD中利用三角形的第三边长小于两边之和,大于两边只差;
(3) 延长FO交BC于G点,就可以将BE,FD,EF放在一个三角形中,利用三角形两边之和大于第三边即可.
【详解】
(1)解:∵四边形ABCD为平行四边形,
∴BC=AD=3,OA=OC,
∵点E为AB中点,
∴OE为△ABC的中位线,
∴OE=BC=;
(2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,
而OA=OC,
∴5﹣3<2AO<5+3,
∴1<AO<4;
(3)证明:延长FO交BC于G点,连接EG,如图,
∵四边形ABCD为平行四边形,
∴OB=OD,BC∥AD,
∴∠OBG=∠ODF,
在△OBG和△ODF中
,
∴△OBG≌△ODF,
∴BG=DF,OG=OF,
∵EO⊥OF,
∴EG=EF,
在△BEG中,BE+BG>EG,
∴BE+FD>EF.
本题主要考查中位线的性质,以及通过构造新的全等三角形,应用三角形两边之和大于第三边性质来比较线段的关系.
25、的面积是.
【解析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【详解】
解:∵BD2+AD2=62+82=102=AB2,
∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,
∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=1,
因此△ABC的面积为1.
答:△ABC的面积是1.
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.
26、原计划每天加工20套.
【解析】
设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.
【详解】
解:设原计划每天加工x套,由题意得:
解得:x=20,
经检验:x=20是原方程的解.
答:原计划每天加工20套.
考点:分式方程的应用
题号
一
二
三
四
五
总分
得分
2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】: 这是一份2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市昌平二中学南校区数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市昌平二中学南校区数学九上开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。