终身会员
搜索
    上传资料 赚现金
    苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析)
    立即下载
    加入资料篮
    苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析)01
    苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析)02
    苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析)

    展开
    这是一份苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析),共30页。

    专题7.1 平行线的判定【七大题型】【苏科版】TOC \o "1-3" \h \u  HYPERLINK \l "_Toc15185" 【题型1 平行公理及其推论】  PAGEREF _Toc15185 \h 1 HYPERLINK \l "_Toc5524" 【题型2 同位角相等,两直线平行】  PAGEREF _Toc5524 \h 2 HYPERLINK \l "_Toc26075" 【题型3 内错角相等,两直线平行】  PAGEREF _Toc26075 \h 4 HYPERLINK \l "_Toc18821" 【题型4 同旁内角互补,两直线平行】  PAGEREF _Toc18821 \h 5 HYPERLINK \l "_Toc3069" 【题型5 平行线的判定方法的综合运用】  PAGEREF _Toc3069 \h 6 HYPERLINK \l "_Toc31586" 【题型6 角平分线与平行线的判定综合运用】  PAGEREF _Toc31586 \h 7 HYPERLINK \l "_Toc19257" 【题型7 平行线判定的实际应用】  PAGEREF _Toc19257 \h 9【知识点 平行线的判定】1.平行公理及其推论①经过直线外一点,有且只有一条直线与已知直线平行. ②如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 2.平行线的判定方法 ①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行). ②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (内错角相等,两直线平行. ③两直线被第三条直线所截,如果同旁内角互补,则这两条直线平行.(同旁内角互补,两直线平行.) 【题型1 平行公理及其推论】【例1】(2022·江西上饶·七年级期中)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(    )A.a∥d B.b⊥d C.a⊥d D.b∥c【变式1-1】(2022·河南漯河·七年级期末)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是(   )A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【变式1-2】(2022·湖北武汉·七年级期中)下列命题:①内错角相等;②两个锐角的和是钝角;③ a , b , c 是同一平面内的三条直线,若a//b,b// c ,则a// c ;④ a , b , c 是同一平面内的三条直线,若a  b , b  c ,则a  c ; 其中真命题的个数是(        )A.1个 B.2 个 C.3 个 D.4 个【变式1-3】(2022·四川·甘孜藏族自治州教育局七年级期末)如图, AB∥CD, 如果∠1=∠2, 那么EF与AB平行吗? 说说你的理由. 解:因为∠1=∠2,所以____________∥___________.(          )又因为AB∥CD,所以AB∥EF. (           )【题型2 同位角相等,两直线平行】【例2】(2022·甘肃·陇南育才学校七年级期末)如图,AB⊥MN,垂足为B,CD⊥MN,垂足为D,∠1=∠2.在下面括号中填上理由.因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2( ),所以∠ABM−∠1=∠CDM−∠2( ),即∠EBM=∠FDM.所以EB∥FD( )【变式2-1】(2022·湖北·蕲春县向桥乡白水中学七年级阶段练习)如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是______.【变式2-2】(2022·山东泰安·七年级期末)如图,AB⊥BC,∠1+∠2=90°,∠2=∠3.请说明线段BE与DF的位置关系?为什么?【变式2-3】(2022·北京东城·七年级期末)如图,直线l与直线AB,CD分别交于点E,F,∠1是它的补角的3倍,∠1−∠2=90°.判断AB与CD的位置关系,并说明理由.【题型3 内错角相等,两直线平行】【例3】(2022·山东·曲阜九巨龙学校七年级阶段练习)如图,点A在直线DE上,AB⊥AC于A,∠1与∠C互余,DE和BC平行吗?若平行,请说明理由.【变式3-1】(2022·北京市房山区燕山教委八年级期中)如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.【变式3-2】(2022·福建·莆田第二十五中学八年级阶段练习)如图,CF是△ABC外角∠ACM的平分线,∠ACB=40°,∠A=70°,求证:AB∥CF.【变式3-3】(2022·辽宁·阜新市第十中学七年级期中)如图,AB∥DE,∠1=∠ACB,∠CAB=12∠BAD,试说明AD∥BC.【题型4 同旁内角互补,两直线平行】【例4】(2022·河北衡水·七年级阶段练习)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.【变式4-1】(2022·西藏昂仁县中学七年级期中)如图,∠CAD=20°,∠B=70°,AB⊥AC,求证:AD∥BC.【变式4-2】(2022·甘肃·平凉市第七中学七年级期中)如图,∠1=30°,∠B=60°,AB⊥AC.(1) ∠DAB+∠B等于多少度?(2)AD与BC平行吗?请说明理由.【变式4-3】(2022·北京市第五中学分校七年级期末)如图,已知点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D,F,点M,G在AB上,GF交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,求证:MD∥GF.下面是小颖同学的思考过程,请补全证明过程并在括号内填上证明依据.证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(①  ).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD( ②  ).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴③  (内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(④  ).∴MD∥GF(⑤  ).【题型5 平行线的判定方法的综合运用】【例5】(2022·广西贺州·七年级期末)如图,有下列条件:①∠1=∠2;②∠3+∠4=180°;③∠5+∠6=180°;④∠2=∠3.其中,能判断直线a∥b的有(   )A.4个 B.3个 C.2个 D.1个【变式5-1】(2022·浙江台州·七年级期末)在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,不能判断两条直轨是否平行(   )A.∠1 B.∠3 C.∠4 D.∠5【变式5-2】(2022·山西临汾·七年级期末)在下列图形中,已知∠1=∠2,一定能推导出l1∥l2的是(   )A. B. C. D.【变式5-3】(2022·山东日照·七年级期末)如图,在下列给出的条件中,不能判定DE∥BC的是(    )A.∠1=∠2 B.∠3=∠4 C.∠5=∠C D.∠B+∠BDE=180°【题型6 角平分线与平行线的判定综合运用】【例6】(2022·吉林·大安市乐胜乡中学校七年级阶段练习)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ ADC,判断BE、DF是否平行,并说明理由.【变式6-1】(2022·江苏·扬州市邗江区实验学校七年级期末)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠2=∠   (    ).∵∠1=∠2(已知),∴∠1=∠   (    ).∴AB∥CD(    ).【变式6-2】(2022·辽宁沈阳·七年级期末)按逻辑填写步骤和理由,将下面的证明过程补充完整如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(____________)∴∠ABF=______(等量代换)∵BE平分∠ABF(已知)∴∠EBF=12______(____________)∵FC平分∠BFG(已知)∴∠CFB=12______(____________)∴∠EBF=______∴BE∥CF(____________)【变式6-3】(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC.请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(______),所以∠BAG=∠AGC(______).因为EA平分∠BAG,所以∠1=12∠BAG(______).因为FG平分∠AGC,所以∠2=12______,得∠1=∠2(等量代换),所以______(______).【题型7 平行线判定的实际应用】【例7】(2022·全国·七年级课时练习)如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为(  )A.65° B.85° C.95° D.115°【变式7-1】(2022·河南·郑州外国语学校经开校区七年级阶段练习)如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是(  )A.如图1,展开后测得∠1=∠2 B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2 D.在图4中,展开后测得∠1+∠2=180°【变式7-2】(2022·全国·七年级)一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是(    )A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.【变式7-3】(2022·江苏·南京外国语学校七年级期中)如图,a、b、c三根木棒钉在一起,∠1=70°,∠2=100°,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行. 专题7.1 平行线的判定【七大题型】【苏科版】TOC \o "1-3" \h \u  HYPERLINK \l "_Toc10631" 【题型1 平行公理及其推论】  PAGEREF _Toc10631 \h 1 HYPERLINK \l "_Toc29751" 【题型2 同位角相等,两直线平行】  PAGEREF _Toc29751 \h 4 HYPERLINK \l "_Toc6738" 【题型3 内错角相等,两直线平行】  PAGEREF _Toc6738 \h 6 HYPERLINK \l "_Toc5743" 【题型4 同旁内角互补,两直线平行】  PAGEREF _Toc5743 \h 9 HYPERLINK \l "_Toc5119" 【题型5 平行线的判定方法的综合运用】  PAGEREF _Toc5119 \h 12 HYPERLINK \l "_Toc19977" 【题型6 角平分线与平行线的判定综合运用】  PAGEREF _Toc19977 \h 15 HYPERLINK \l "_Toc11883" 【题型7 平行线判定的实际应用】  PAGEREF _Toc11883 \h 19【知识点 平行线的判定】1.平行公理及其推论①经过直线外一点,有且只有一条直线与已知直线平行. ②如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 2.平行线的判定方法 ①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行). ②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (内错角相等,两直线平行. ③两直线被第三条直线所截,如果同旁内角互补,则这两条直线平行.(同旁内角互补,两直线平行.) 【题型1 平行公理及其推论】【例1】(2022·江西上饶·七年级期中)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(    )A.a∥d B.b⊥d C.a⊥d D.b∥c【答案】C【分析】根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d.【详解】解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d,故选:C.【点睛】本题主要考查了平行线及垂线的性质,解题的关键是掌握同一平面内,垂直于同一条直线的两条直线平行.【变式1-1】(2022·河南漯河·七年级期末)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是(   )A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【答案】B【分析】三条直线AB、a、b位于同一平面内,且直线a与直线b都垂直于AB,即可根据在同一平面内,垂直于同一条直线的两条直线互相平行的性质来判断出a∥b.【详解】∵直线AB、a、b位于同一平面内,且AB⊥a、AB⊥b∴a∥b(同一平面内,垂直于同一条直线的两条直线互相平行)故答案为B.【点睛】本题考查了平行线判定的性质,根据已知题目反应出两条直线是同一平面内,且同时垂直于一条直线是本题的关键.【变式1-2】(2022·湖北武汉·七年级期中)下列命题:①内错角相等;②两个锐角的和是钝角;③ a , b , c 是同一平面内的三条直线,若a//b,b// c ,则a// c ;④ a , b , c 是同一平面内的三条直线,若a  b , b  c ,则a  c ; 其中真命题的个数是(        )A.1个 B.2 个 C.3 个 D.4 个【答案】A【分析】根据平行线性质可判断①,根据两锐角的大小求和可判断②,根据平行公理推论可判断③,根据垂直定义得出∠1=∠2=90°,然后利用同位角相等,两直线平行的判定可判断④.【详解】解:①两直线平行,内错角相等,故①不正确;②两个锐角的和可以是锐角,直角,钝角,故②不正确;③ a , b , c 是同一平面内的三条直线,若a//b,b// c ,则a// c ,故③正确;④ a , b , c 是同一平面内的三条直线,如图∵a  b , b  c ,∴∠1=90°,∠2=90°,∴∠1=∠2∴a ∥ c ,故④不正确;∴真命题只有1个.故选A.【点睛】本题考查平行线的性质与判定,两锐角和的大小,掌握平行线的性质与判定,锐角定义是解题关键.【变式1-3】(2022·四川·甘孜藏族自治州教育局七年级期末)如图, AB∥CD, 如果∠1=∠2, 那么EF与AB平行吗? 说说你的理由. 解:因为∠1=∠2,所以____________∥___________.(          )又因为AB∥CD,所以AB∥EF. (           )【答案】CD∥EF;内错角相等,两直线平行;平行于同一直线的两条直线平行【分析】根据平行线的判定定理完成填空即可求解.【详解】解:因为∠1=∠2​,所以CD∥EF.(内错角相等,两直线平行)又因为AB∥CD​,所以AB∥EF​.(平行于同一直线的两条直线平行)【点睛】本题考查了平行线的判定,平行公理,掌握平行线的判定定理是解题的关键.【题型2 同位角相等,两直线平行】【例2】(2022·甘肃·陇南育才学校七年级期末)如图,AB⊥MN,垂足为B,CD⊥MN,垂足为D,∠1=∠2.在下面括号中填上理由.因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2( ),所以∠ABM−∠1=∠CDM−∠2( ),即∠EBM=∠FDM.所以EB∥FD( )【答案】     已知     等量减等量,差相等     同位角相等,两直线平行【分析】根据垂线的定义,得出∠ABM=∠CDM=90°,再根据角的等量关系,得出∠EBM=∠FDM,然后再根据同位角相等,两直线平行,得出EB∥FD,最后根据解题过程的理由填写即可.【详解】因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2(已知),所以∠ABM−∠1=∠CDM−∠2(等量减等量,差相等),即∠EBM=∠FDM.所以EB∥FD(同位角相等,两直线平行).【点睛】本题考查了垂线的定义、平行线的判定,解本题的关键在熟练掌握平行线的判定定理.【变式2-1】(2022·湖北·蕲春县向桥乡白水中学七年级阶段练习)如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是______.【答案】同位角相等,两直线平行【分析】作图时保持∠1=∠2,根据同位角相等,两直线平行即可画出已知直线的平行线.【详解】解:过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定和性质,平行公理,解决本题的关键是掌握平行线的判定和性质.【变式2-2】(2022·山东泰安·七年级期末)如图,AB⊥BC,∠1+∠2=90°,∠2=∠3.请说明线段BE与DF的位置关系?为什么?【答案】BE∥DF,见解析【分析】由已知推出∠3+∠4=90°,利用∠1+∠2=90°,∠2=∠3,得到∠1=∠4,即可得到结论BE∥DF.【详解】解:BE∥DF,∵AB⊥BC, ∴∠ABC=90°,∴∠3+∠4=90°,∵∠1+∠2=90°,∠2=∠3,∴∠1=∠4,∴BE∥DF.【点睛】此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.【变式2-3】(2022·北京东城·七年级期末)如图,直线l与直线AB,CD分别交于点E,F,∠1是它的补角的3倍,∠1−∠2=90°.判断AB与CD的位置关系,并说明理由.【答案】AB∥CD;理由见解析【分析】先根据补角的定义求出∠1的度数,然后求出∠CFE和∠2的度数,最后根据平行线的判定进行解答即可.【详解】解:AB∥CD;理由如下:∵∠1是它的补角的3倍,∴设∠1=α,则∠1的补角为13α,∴α+13α=180°,解得:α=135°,∴∠1=135°,∴∠CFE=180°−∠1=45°,∵∠1−∠2=90°,∴∠2=∠1−90°=45°,∴∠2=∠CFE=45°,∴AB∥CD.【点睛】本题主要考查了补角的有关计算,平行线的判定,根据题意求出∠2=∠CFE=45°,是解题的关键.【题型3 内错角相等,两直线平行】【例3】(2022·山东·曲阜九巨龙学校七年级阶段练习)如图,点A在直线DE上,AB⊥AC于A,∠1与∠C互余,DE和BC平行吗?若平行,请说明理由.【答案】平行,理由见解析【分析】由垂直定义可得∠BAC=90°,根据平角定义得∠1+∠BAC+∠CAE=180°,即可得出∠1+∠CAE=90°,由∠1与∠C互余,根据余角的性质即可得出∠CAE=∠C,根据平行线的判定定理即可得出结论.【详解】解:平行, 理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1+∠BAC+∠CAE=180°,∴∠1+∠CAE=90°,∵∠1与∠C互余,即∠1+∠C=90°,∴∠CAE=∠C,∴DE∥BC.【点睛】本题考查平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.【变式3-1】(2022·北京市房山区燕山教委八年级期中)如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.【答案】见解析【分析】先根据三角形内角和性质,求得∠4=75°,再根据∠1=75°,即可得到∠1=∠4,进而判定a∥b.【详解】证明:如下图:∵∠4=∠3+∠2=75°,又∵∠1=75°,∴∠1=∠4,∴a∥b.【点睛】本题主要考查了平行线的判定以及三角形内角和性质,解题时注意:内错角相等,两直线平行.【变式3-2】(2022·福建·莆田第二十五中学八年级阶段练习)如图,CF是△ABC外角∠ACM的平分线,∠ACB=40°,∠A=70°,求证:AB∥CF.【答案】证明见解析【分析】由角平分线的定义及补角的定义可求得∠ACE的度数,即可得∠A=∠ACE,进而可证明结论.【详解】证明:∵∠ACB=40°,∴∠ACM=180°−40°=140°,∵CF是△ABC外角∠ACM的平分线,∴∠ACF=12∠ACM=70°,∵∠A=70°,∴∠A=∠ACF=70°,∴AB∥CF.【点睛】本题主要考查角平分线的定义、三角形外角的性质和平行线的判定,证得∠A=∠ACF是解题的关键.【变式3-3】(2022·辽宁·阜新市第十中学七年级期中)如图,AB∥DE,∠1=∠ACB,∠CAB=12∠BAD,试说明AD∥BC.【答案】见解析【分析】根据平行线的性质得∠BAC=∠1,等量代换得∠ACB=∠BAC,根据∠CAB=12∠BAD可得∠ACB=∠DAC,即可得.【详解】证明:∵AB∥DE,∴∠BAC=∠1,∵∠1=∠ACB,∴∠ACB=∠BAC,∵∠CAB=12∠BAD,∴∠ACB=∠DAC,∴AD∥BC.【点睛】本题考查了平行线的判定与性质,解题的关键是掌握平行线的判定与性质.【题型4 同旁内角互补,两直线平行】【例4】(2022·河北衡水·七年级阶段练习)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.【答案】见解析【分析】根据同旁内角互补,两直线平行,再根据平行于同一条直线的两条直线平行即可证明结论.【详解】证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.【点睛】本题考查了平行线的判定,解决本题的关键是掌握平行线的判定.【变式4-1】(2022·西藏昂仁县中学七年级期中)如图,∠CAD=20°,∠B=70°,AB⊥AC,求证:AD∥BC.【答案】见解析【分析】根据同旁内角互补,两直线平行证明即可.【详解】解:∵AB⊥AC,∴∠BAC=90°,∵∠CAD=20°,∠B=70°,∴∠B+∠BAD=70°+90°+20°=180°,∴AD∥BC.【点睛】本题考查平行线的判定、垂直定义,熟练掌握平行线的判定方法是解答的关键.【变式4-2】(2022·甘肃·平凉市第七中学七年级期中)如图,∠1=30°,∠B=60°,AB⊥AC.(1) ∠DAB+∠B等于多少度?(2)AD与BC平行吗?请说明理由.【答案】(1)∠DAB+∠B=180°(2)AD∥BC;理由见解析【分析】(1)由已知可求得∠DAB=120°,从而可求得∠DAB+∠B=180°;(2)根据同旁内角互补两直线平行可得AD∥BC.(1)解:∵AB⊥AC,∴∠BAC=90°.又∵∠1=30°,∴∠BAD=120°,∵∠B=60°,∴∠DAB+∠B=180°.(2)解:AD∥BC.理由如下:∵∠DAB+∠B=180°,∴AD∥BC.【点睛】本题主要考查了平行线的判定,解题的关键是熟练掌握同旁内角互补,两直线平行.【变式4-3】(2022·北京市第五中学分校七年级期末)如图,已知点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D,F,点M,G在AB上,GF交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,求证:MD∥GF.下面是小颖同学的思考过程,请补全证明过程并在括号内填上证明依据.证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(①  ).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD( ②  ).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴③  (内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(④  ).∴MD∥GF(⑤  ).【答案】垂直的定义;两直线平行,同位角相等;GF∥BC;同旁内角互补,两直线平行;平行于同一直线的两直线平行.【分析】根据垂直定义得出∠BDC=∠EFC,根据平行线的判定推出BD∥EF,根据平行线的性质得出∠CBD=∠2,求出∠CBD=∠1,根据平行线的判定得出GF∥BC,GF∥MD即可.【详解】证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(垂直的定义).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD(两直线平行,同位角相等).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴GF∥BC(内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(同旁内角互补,两直线平行).∴MD∥GF(平行于同一直线的两直线平行).故答案为:垂直的定义;两直线平行,同位角相等;GF∥BC;同旁内角互补,两直线平行;平行于同一直线的两直线平行.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.【题型5 平行线的判定方法的综合运用】【例5】(2022·广西贺州·七年级期末)如图,有下列条件:①∠1=∠2;②∠3+∠4=180°;③∠5+∠6=180°;④∠2=∠3.其中,能判断直线a∥b的有(   )A.4个 B.3个 C.2个 D.1个【答案】B【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论.【详解】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;故能判断直线a∥b的有3个,故选:B.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解决问题的关键.【变式5-1】(2022·浙江台州·七年级期末)在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,不能判断两条直轨是否平行(   )A.∠1 B.∠3 C.∠4 D.∠5【答案】A【分析】因为∠2是直角,只要找出与∠2互为同位角、内错角、同旁内角的其他角,根据平行线的判定定理判定即可得到正确答案.【详解】因为∠2是直角,∠4和∠2是同位角,如果度量出∠4=90°,根据“同位角相等,两直线平行”,就可以判断两条直轨平行,∠5和∠2是内错角,如果度量出∠5=90°,根据“内错角相等,两直线平行”,就可以判断两条直轨平行,∠3和∠2是同旁内角,如果度量出∠3=90°, 根据“同旁内角互补,两直线平行”,就可以判断两条直轨平行,所以答案为:A.【点睛】本题考查两直线平行的判定定理,解决本题的关键是熟练的掌握平行线的判定定理.【变式5-2】(2022·山西临汾·七年级期末)在下列图形中,已知∠1=∠2,一定能推导出l1∥l2的是(   )A. B. C. D.【答案】D【分析】根据邻补角的定义,对顶角相等和平行线的判定定理即可求解.【详解】解:A.如图, ∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1∥l2,不符合题意;B.如图, ∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1∥l2,不符合题意;C.如图, ∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1∥l2,不符合题意;D.如图, ∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴一定能推导出l1∥l2,符合题意.故选:D.【点睛】本题考查了平行线的判定,关键是熟悉同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识点.【变式5-3】(2022·山东日照·七年级期末)如图,在下列给出的条件中,不能判定DE∥BC的是(    )A.∠1=∠2 B.∠3=∠4 C.∠5=∠C D.∠B+∠BDE=180°【答案】B【分析】根据平行线的判定定理逐一判断即可.【详解】因为∠1=∠2,所以DE∥BC,故A不符合题意;因为∠3=∠4,不能判断DE∥BC,故B符合题意;因为∠5=∠C,所以DE∥BC,故C不符合题意;因为∠B+∠BDE=180°,所以DE∥BC,故D不符合题意;故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.【题型6 角平分线与平行线的判定综合运用】【例6】(2022·吉林·大安市乐胜乡中学校七年级阶段练习)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ ADC,判断BE、DF是否平行,并说明理由.【答案】平行,理由见解析【分析】先根据角平分线的定义可得∠ABE=12∠ABC,∠ADF=12∠ADC,从而可得∠ADF+∠ABE=90°,再结合∠ADF+∠AFD=90°可得∠ABE=∠AFD,然后根据平行线的判定即可得.【详解】解:BE∥DF,理由如下:∵BE,DF分别平分∠ABC,∠ADC,∴∠ABE=12∠ABC,∠ADF=12∠ADC,∵∠ADC+∠ABC=180°,∴∠ADF+∠ABE=12∠ADC+∠ABC=90°,又∵∠ADF+∠AFD=90°,∴∠ABE=∠AFD,∴BE∥DF.【点睛】本题考查了角平分线、平行线的判定,熟练掌握平行线的判定方法是解题关键.【变式6-1】(2022·江苏·扬州市邗江区实验学校七年级期末)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠2=∠   (    ).∵∠1=∠2(已知),∴∠1=∠   (    ).∴AB∥CD(    ).【答案】ECD;角平分线的性质;ECD;等量代换;内错角相等,两直线平行【分析】根据平行线的判定依据角平分线的性质即可解决问题.【详解】证明:∵CE平分∠ACD,∴∠2=∠ECD(角平分线的性质),∵∠1=∠2.(已知),∴∠1=∠ECD(等量代换),∴AB∥CD(内错角相等两直线平行).故答案为:ECD;角平分线的定义;ECD;等量代换;内错角相等,两直线平行.【点睛】本题主要考查平行线的性质和判定和角平分线的性质,解题的关键是根据平行线的判定解答.【变式6-2】(2022·辽宁沈阳·七年级期末)按逻辑填写步骤和理由,将下面的证明过程补充完整如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(____________)∴∠ABF=______(等量代换)∵BE平分∠ABF(已知)∴∠EBF=12______(____________)∵FC平分∠BFG(已知)∴∠CFB=12______(____________)∴∠EBF=______∴BE∥CF(____________)【答案】对顶角相等;∠BFG;∠ABF;角平分线的定义;∠BFG;角平分线的定义;∠CFB;内错角相等,两直线平行;【分析】根据对顶角的定义,平行线的判定,角平分线的性质,结合上下文填空即可.【详解】证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(对顶角相等)∴∠ABF=∠BFG(等量代换)∵BE平分∠ABF(已知)∴∠EBF=12∠ABF(角平分线的定义)∵FC平分∠BFG(已知)∴∠CFB=12∠BFG(角平分线的定义)∴∠EBF=∠CFB,∴BE∥CF(内错角相等,两直线平行),故答案为:对顶角相等;∠BFG;∠ABF;角平分线的定义;∠BFG;角平分线的定义;∠CFB;内错角相等,两直线平行.【点睛】本题考查对顶角的定义及性质,平行线的判定,角平分线的性质,能够熟练掌握平行线的判定是解决本题的关键.【变式6-3】(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC.请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(______),所以∠BAG=∠AGC(______).因为EA平分∠BAG,所以∠1=12∠BAG(______).因为FG平分∠AGC,所以∠2=12______,得∠1=∠2(等量代换),所以______(______).【答案】平角的定义;同角的补角相等;角平分线的定义;∠AGC;AE∥GF;内错角相等,两直线平行【分析】由题意可求得∠BAG=∠AGC,再由角平分线的定义得∠1=12∠BAG,∠2=12∠AGC,从而得∠1=∠2,即可判定AE∥GF.【详解】解:∵∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(平角的定义),∴∠BAG=∠AGC(同角的补角相等).∵EA平分∠BAG,∴∠1=12∠BAG(角平分线的定义).∵FG平分∠AGC,∴∠2=12∠AGC,∴∠1=∠2(等量代换),∴ AE∥GF(内错角相等,两直线平行).故答案为:平角的定义;同角的补角相等;角平分线的定义;∠AGC;AE∥GF;内错角相等,两直线平行.【点睛】本题主要考查角平分线的定义,补角的性质和平行线的判定,解答的关键是熟练掌握平行线的判定定理并灵活运用.【题型7 平行线判定的实际应用】【例7】(2022·全国·七年级课时练习)如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为(  )A.65° B.85° C.95° D.115°【答案】B【分析】根据同位角相等两直线平行可得当∠AOB=65°时,a∥b,进而算出答案.【详解】解:∵当∠AOB=65°时,a∥b∴旋转的最小角度为150°﹣65°=85°,故选:B【点睛】此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.【变式7-1】(2022·河南·郑州外国语学校经开校区七年级阶段练习)如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是(  )A.如图1,展开后测得∠1=∠2 B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2 D.在图4中,展开后测得∠1+∠2=180°【答案】C【分析】根据平行线的判定定理,进行分析,即可解答.【详解】A、 当∠1=∠2时,内错角相等,两直线平行,所以a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90∘,所以a∥b;C、∠1=∠2不能判定a,b互相平行;D、∠1+∠2=180°时,同旁内角互补,两直线平行,所以a∥b.故选:C.【点睛】本题考查平行线的判定,掌握平行线的判定定理是解题的关键.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.【变式7-2】(2022·全国·七年级)一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是(    )A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.【答案】B【分析】画出图形,根据平行线的判定分别判断即可得出.【详解】A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.故选:B.【点睛】本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.【变式7-3】(2022·江苏·南京外国语学校七年级期中)如图,a、b、c三根木棒钉在一起,∠1=70°,∠2=100°,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.【答案】2或14或50或110【分析】设t秒后木棒a,b平行,分四种情况讨论:当073时,即可求解.【详解】解:设t秒后木棒a,b平行,根据题意得:当020时,木棒a停止运动,当20703时,3t−70=180−100或3t−70−180=180−100,解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        苏科版七年级数学下册举一反三专题7.1平行线的判定【七大题型】特训(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map