|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年广西柳州市十二中学九年级数学第一学期开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    2024年广西柳州市十二中学九年级数学第一学期开学调研模拟试题【含答案】01
    2024年广西柳州市十二中学九年级数学第一学期开学调研模拟试题【含答案】02
    2024年广西柳州市十二中学九年级数学第一学期开学调研模拟试题【含答案】03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广西柳州市十二中学九年级数学第一学期开学调研模拟试题【含答案】

    展开
    这是一份2024年广西柳州市十二中学九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列根式中,与是同类二次根式的是 ( )
    A. B. C. D.
    2、(4分)如图,把绕着点逆时针旋转得到,,则的度数为( )
    A.B.C.D.
    3、(4分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起销售,若要想销售收入保持不变,则售价大概应定为每千克( )
    A.7元B.6.8元C.7.5元D.8.6元
    4、(4分)四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是( )
    A.平行四边形B.矩形C.菱形D.正方形
    5、(4分)一次函数的图象经过点,且与轴,轴分别交于点、,则的面积是
    A.B.1C.D.2
    6、(4分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为( )
    A.10°B.15°C.20°D.25°
    7、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为
    A.B.C.D.
    8、(4分)如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为( )
    A.5cmB.10cmC.20cmD.40cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一组数据2,3,2,3,5的方差是__________.
    10、(4分)如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.
    11、(4分)分式的值为1.则x的值为_____.
    12、(4分)如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.
    13、(4分)已知+=0,则(a﹣b)2的平方根是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:x2﹣6x+8=1.
    15、(8分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:
    (1)甲车出发多长时间后被乙车追上?
    (2)甲车与乙车在距离A地多远处迎面相遇?
    (3)甲车从B地返回的速度多大时,才能比乙车先回到A地?
    16、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
    (1) (2)
    17、(10分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
    (1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;
    (2)求本次调查获取的样本数据的平均数;
    (3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.
    18、(10分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
    (1)求证:△AOE≌△COF;
    (2)若AC平分∠HAG,求证:四边形AGCH是菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为_____.
    20、(4分)如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.
    21、(4分)数据101,98,102,100,99的方差是______.
    22、(4分)某品牌运动服原来每件售价640元,经过两次降价,售价降低了280元,已知两次降价的百分率相同,则每次降价的百分率为_____.
    23、(4分)一次函数的图象过点,且y随x的增大而减小,则m=_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)实践与探究
    如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。
    (1)求直线的解析式;
    (2)若点是轴上一点,且的面积是面积的,求点的坐标;
    25、(10分)判断代数式的值能否等于-1?并说明理由.
    26、(12分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
    (1)求证:△BCD≌△FCE;
    (2)若EF∥CD.求∠BDC的度数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:A.与被开方数不同,故不是同类二次根式;
    B.与被开方数不同,故不是同类二次根式;
    C.与被开方数相同,故是同类二次根式;
    D.与被开方数不同,故不是同类二次根式.
    故选C.
    考点:同类二次根式.
    2、D
    【解析】
    直接根据旋转的性质求解
    【详解】
    绕着点逆时针旋转得到
    ∴BAD=CAE=20°
    ∴==30°+20°=50°
    故选D
    本题考查了旋转的性质。掌握旋转的性质是解题的关键。
    3、B
    【解析】
    根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.
    【详解】
    解:售价应定为: (元);故选:B
    本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求6,7,8这三个数的平均数.
    4、D
    【解析】
    根据四边形对角线相等且互相垂直,运用三角形中位线平行于第三边证明四个角都是直角且邻边相等,判断是正方形
    【详解】
    解:如图:
    ∵E、F、G、H分别为各边中点,
    ∴EF∥GH∥DB,EF=GH=DB,
    EH=FG=AC,EH∥FG∥AC,
    ∴四边形EFGH是平行四边形,
    ∵DB⊥AC,
    ∴EF⊥EH,
    ∴四边形EFGH是矩形.
    同理可证EH=AC,
    ∵AC=BD,
    ∴EH=EF
    ∴矩形EFGH是正方形,
    故选:D.
    本题考查的是中点四边形,解题时,主要是利用了三角形中位线定理的性质,比较简单,也可以利用三角形的相似,得出正确结论.
    5、C
    【解析】
    由一次函数y=−3x+m的图象经过点P(−2,3),可求m得值,确定函数的关系式,进而可求出与x轴,y轴分别交于点A、B的坐标,从而知道OA、OB的长,可求出△AOB的面积.
    【详解】
    解:将点P(−2,3)代入一次函数y=−3x+m得:3=6+m,
    ∴m=−3
    ∴一次函数关系式为y=−3x−3,
    当x=0时,y=−3;
    当y=0是,x=−1;
    ∴OA=1,OB=3,
    ∴S△AOB=×1×3=,
    故选:C.
    考查一次函数图象上点的坐标特征,以及一次函数的图象与x轴、y轴交点坐标求法,正确将坐标与线段的长的相互转化是解决问题的前提和基础.
    6、B
    【解析】
    试题分析:根据正方形的性质及旋转的性质可得ΔECF是等腰直角三角形,∠DFC=∠BEC=60°,即得结果.
    由题意得EC=FC,∠DCF=90°,∠DFC=∠BEC=60°
    ∴∠EFC=45°
    ∴∠EFD=15°
    故选B.
    考点:正方形的性质,旋转的性质,等腰直角三角形的判定和性质
    点评:解答本题的关键是熟练掌握旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
    7、B
    【解析】
    根据折叠前后对应角相等即可得出答案.
    【详解】
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    本题考核知识点:轴对称. 解题关键点:理解折叠的意义.
    8、D
    【解析】
    根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,AO=OC,
    ∵AM=BM,
    ∴BC=2MO=2×5cm=10cm,
    即AB=BC=CD=AD=10cm,
    即菱形ABCD的周长为40cm,
    故选D.
    本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.2
    【解析】
    解:先求出平均数(2+3+2+3+5)5=3,
    再根据方差公式计算方差=即可
    10、1.
    【解析】
    草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.
    【详解】
    解:S=32×24-2×24-2×32+2×2=1(m2).
    故答案为:1.
    本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.
    11、2
    【解析】
    分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    解:由题意可得|x|-2=1且x+2≠1,
    解得x=2.
    故答案是:2.
    考查了分式的值为零的条件,由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
    12、2.4
    【解析】
    在Rt中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.
    【详解】
    解:Rt中,AC=4m,BC=3m
    AB=m

    ∴m=2.4m
    故答案为2.4 m
    本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.
    13、±1.
    【解析】
    根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.
    【详解】
    根据题意得a-1=2,且b-5=2,
    解得:a=1,b=5,
    则(a-b)2=16,则平方根是:±1.
    故答案是:±1.
    本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.
    三、解答题(本大题共5个小题,共48分)
    14、x1=2 x2=2.
    【解析】
    应用因式分解法解答即可.
    【详解】
    解:x2﹣6x+8=1
    (x﹣2)(x﹣2)=1,
    ∴x﹣2=1或x﹣2=1,
    ∴x1=2 x2=2.
    本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.
    15、(1)1.5小时;(2)40.8;(3)48千米/小时.
    【解析】
    解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,
    将(2.4,48)代入,解得k=20,所以s=20t,
    由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).
    即甲车出发1.5小时后被乙车追上,
    (2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,
    将(1.0,0)和(1.5,30)代入,得,解得,
    所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,
    又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,
    将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,
    所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t
    解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;
    (3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,
    甲车要比乙车先回到A地,速度应大于(千米/小时).
    【点评】本题考查的是一次函数在实际生活中的运用,解答此类问题时要利用数形结合的方法解答.
    16、①;②
    【解析】
    (1)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    (2)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    【详解】
    (1)x2-7x-18=(x+2)(x-9);
    (2)x2+12xy-13y2=(x+13y)(x-y).
    本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.
    17、(1)50,32;(2)16;(3)1.
    【解析】
    (1)用零花钱为5元频数除以本组所占百分比即可求出抽样调查人数,求出零花钱为10元人数所占比例即可求出m;
    (2)根据加权平均数计算公式即可解决问题;
    (3)用300乘以样本中零花钱不多于10元的学生所占百分比即可求解.
    【详解】
    解:(1)4÷8%=50(人),

    ∴m=32;
    (2)(元);
    (3)(人).
    本题考查了扇形统计图,条形统计图,加权平均数,用样本估计总体等知识,熟记相关知识点是解题关键.
    18、 (1)见解析;(2) 见解析.
    【解析】
    (1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
    (2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD.
    ∵BE=DF,∴OE=OF.
    在△AOE与△COF中,
    ∴△AOE≌△COF(SAS).
    (2)由(1)得△AOE≌△COF,
    ∴∠OAE=∠OCF,∴AE∥CF.
    又∵AH∥CG,∴四边形AGCH是平行四边形.
    ∵AC平分∠HAG,∴∠HAC=∠GAC.
    ∵AH∥CG,∴∠HAC=∠GCA,
    ∴∠GAC=∠GCA,∴CG=AG,
    ∴□AGCH是菱形.
    本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(,0)
    【解析】
    【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x的值,从而得到点P的坐标.
    【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,
    如图,
    令y=x+4中x=0,则y=4,
    ∴点B的坐标为(0,4),
    令y=x+4中y=0,则x+4=0,解得:x=-6,
    ∴点A的坐标为(-6,0),
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(-3,2),点D(0,2),
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,-2),
    设直线CD′的解析式为y=kx+b,
    ∵直线CD′过点C(-3,2),D′(0,-2),
    ∴有,解得:,
    ∴直线CD′的解析式为y=-x-2,
    令y=0,则0=-x-2,解得:x=-,
    ∴点P的坐标为(-,0),
    故答案为(-,0).
    【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.
    20、4米
    【解析】
    过点C作CE⊥AB于点E,则人离墙的距离为CE, 在Rt△ACE中,根据勾股定理列式计算即可得到答案.
    【详解】
    如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,
    过点C作CE⊥AB于点E,则人离墙的距离为CE,
    由题意可知AE=AB-BE=4.5-1.5=3(米).
    当人离传感器A的距离AC=5米时,灯发光.
    此时,在Rt△ACE中,根据勾股定理可得,
    CE2=AC2-AE2=52-32=42,
    ∴CE=4米.
    即人走到离墙4米远时,灯刚好发光.
    本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.
    21、1
    【解析】
    先求平均数,再根据方差公式求方差.
    【详解】
    平均数 .x=(98+99+100+101+101)=100,
    方差s1= [(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.
    故答案为1
    本题考核知识点:方差. 解题关键点:熟记方差公式.
    22、25% .
    【解析】
    设每次降价的百分率为x,根据题意可得,640×(1-降价的百分率)2=(640-280),据此方程解答即可.
    【详解】
    设每次降价的百分率为x
    由题意得:
    解得:x=0.25
    答:每次降低的百分率是25%
    故答案为:25%
    本题考查一元二次方程的应用,属于典型题,审清题意,列出方程是解题关键.
    23、
    【解析】
    根据一次函数的图像过点,可以求得m的值,由y随x的增大而减小,可以得到m<0,从而可以确定m的值.
    【详解】
    ∵一次函数的图像过点,
    ∴,解得:或,
    ∵y随x的增大而减小,
    ∴,
    ∴,
    故答案为:.
    本题考查一次函数图像上点的坐标特征、一次函数的性质,解答此类问题的关键是明确一次函数的性质,利用一次函数的性质解答问题.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)点的坐标为或
    【解析】
    (1)先求出C点坐标,再利用待定系数法确定函数关系式即可求解;
    (2)先求出A点坐标,再过点作轴,垂足为点;过点作轴,垂足为点,设点的坐标为,根据三角形的面积即可列出式子求解;
    【详解】
    解:(1)∵点在上,且横坐标是1,
    ∴把代入中,得,
    ∴点的坐标为,
    设直线的解析式为,将点的坐标代入得
    解得
    ∴直线的解析式为;
    (2)∵点是直线与轴的交点,
    ∴把代入中得,,∴点坐标为,
    过点作轴,垂足为点;过点作轴,垂足为点,
    由点的坐标为可得,,
    设点的坐标为,
    依题意得,,
    即,
    解得,,
    ∴点的坐标为或;
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的的性质及三角形的面积求解.
    25、不能,理由见解析
    【解析】
    先将原代数式化简,再令化简后的结果等于-1,解出a的值,由结合分式存在的意义可以得出结论.
    【详解】
    原式= .
    当 =−1时,解得:a=0,
    ∵(a+1)(a−1)a≠0,即a≠±1,a≠0,
    ∴代数式的值不能等于−1.
    此题考查分式的化简求值,解题关键在于掌握运算法则
    26、(1)证明见解析;(2)90°.
    【解析】
    试题分析:(1)、根据旋转图形的性质可得:CD=CE,∠DCE=90°,根据∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,结合已知条件得出三角形全等;(2)、根据全等得出∠BDC=∠E,∠BCD=∠FCE,从而得出∠DCE=90°,然后根据EF∥CD得出∠BDC=90°.
    试题解析:(1)、∵将线段CD绕点C按顺时针方向旋转90°后得CE,
    ∴CD=CE,∠DCE=90°,
    ∵∠ACB=90°,
    ∴∠BCD=90°-∠ACD=∠FCE,
    在△BCD和△FCE中, CB=CF
    ∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE
    ∴△BCD≌△FCE(SAS).
    (2)、由(1)可知△BCD≌△FCE,
    ∴∠BDC=∠E,∠BCD=∠FCE,
    ∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,
    ∵EF∥CD,
    ∴∠E=180°-∠DCE=90°,
    ∴∠BDC=90°.
    考点:(1)、旋转图形的性质;(2)、三角形全等的证明与性质.
    题号





    总分
    得分
    相关试卷

    2024年广西柳州市柳江区九年级数学第一学期开学联考模拟试题【含答案】: 这是一份2024年广西柳州市柳江区九年级数学第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】: 这是一份2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map