广西柳州市城中学区文华中学2024年九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份广西柳州市城中学区文华中学2024年九年级数学第一学期开学达标测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:
则通话时间不超过15 min的频率为( )
A.0.1B.0.4C.0.5D.0.9
2、(4分)已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为( )
A.y=2x+3B.y=2x-3C.y-3=2x+3D.y=3x-3
3、(4分)分式的最简公分母是( )
A.B.
C.D.
4、(4分)学校为了了解八年级学生参加课外活动兴趣小组的情况,随机抽查了40名学生(每人只能参加一个兴趣小组),将调查结果列出如下统计表,则八年级学生参加书法兴趣小组的频率是( )
A.0.1B.0.15C.0.2D.0.3
5、(4分)关于的一元二次方程(,是常数,且),( )
A.若,则方程可能有两个相等的实数根B.若,则方程可能没有实数根
C.若,则方程可能有两个相等的实数根D.若,则方程没有实数根
6、(4分)下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
7、(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )
A.∠BAC=∠DCAB.∠BAC=∠DACC.∠BAC=∠ABDD.∠BAC=∠ADB
8、(4分)已知直角三角形两边的长为3和4,则此三角形的周长为( )
A.12B.7+C.12或7+D.以上都不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
10、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;
11、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过______秒该直线可将平行四边形OABC分成面积相等的两部分.
12、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
13、(4分)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某景区的门票销售分两类:一类为散客门票,价格为元/张;另一类为团体门票(一次性购买门票张以上),每张门票价格在散客门票价格的基础上打折,某班部分同学要去该景点旅游,设参加旅游人,购买门票需要元
(1)如果每人分别买票,求与之间的函数关系式:
(2)如果购买团体票,求与之间的函数关系式,并写出自变量的取值范围;
(3)请根据人数变化设计一种比较省钱的购票方式.
15、(8分)(1)解分式方程:
(2)解方程:3x2﹣8x+5=0
16、(8分)计算:(1);(2)+(3﹣2)(3+2)
17、(10分)某校为了解学生“体育课外活动”的锻炼效果,在期末结束时,随机从学校1200名学生中抽取了部分学生的体育测试成绩绘制了条形统计图,请根据统计图提供的信息,回答下列问题.
(1)这次抽样调查共抽取了多少名学生的体育测试成绩进行统计?
(2)随机抽取的这部分学生中男生体育成绩的众数是多少?女生体育成绩的中位数是多少?
(3)若将不低于40分的成绩评为优秀,请估计这1200名学生中成绩为优秀的学生大约是多少?
18、(10分)已知与成正比例,且时.求:与的函数解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.
20、(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是1.
(1)格点△PMN的面积是_____;
(2)格点四边形EFGH的面积是_____.
21、(4分)函数中,当满足__________时,它是一次函数.
22、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
23、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
二、解答题(本大题共3个小题,共30分)
24、(8分) “金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.
(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);
(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.
25、(10分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.
26、(12分)学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.
【详解】
解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,
∴通话时间不超过15min的频率为=0.9,
故选D.
本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.
2、A
【解析】
用待定系数法可求出函数关系式.
【详解】
y-1与x成正比例,即:y=kx+1,
且当x=2时y=7,则得到:k=2,
则y与x的函数关系式是:y=2x+1.
故选:A.
此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.
3、B
【解析】
通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
【详解】
,,
∴最简公分母是,
故选B.
此题的关键是利用最简公分母的定义来计算,即通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
4、C
【解析】
根据频率=频数数据总和即可得出答案.
【详解】
解:40人中参加书法兴趣小组的频数是8,
频率是8÷40=0.2,可以用此频率去估计八年级学生参加舒服兴趣小组的频率.
故选:C.
本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和,频率=频数数据总和.
5、C
【解析】
求出∆=b2+8a,根据b2+8a的取值情况解答即可.
【详解】
∵,
∴,
∴∆=b2+8a,
A. ∵a>0,
∴b2+8a>0,
∴方程一定有两个相等的实数根,故A、B错误;
C.当a0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份广西柳州市城中区文华中学2024年九年级数学第一学期开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西柳州市城中学区文华中学2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是必然事件的是,函数y=kx﹣k,抛物线的对称轴为等内容,欢迎下载使用。