2024年北京市朝阳区名校数学九年级第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若m+n-p=0,则m的值是( )
A.-3B.-1C.1D.3
2、(4分)如图,字母M所代表的正方形的面积是( )
A.4B.5C.16D.34
3、(4分)利用一次函数y=kx+b(k≠0)的图象解关于x的不等式kx+b≤0,若它的解集是x≥﹣2,则一次函数y=kx+b的图象为( )
A.B.
C.D.
4、(4分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是( )
A.220,220B.220,210C.200,220D.230,210
5、(4分)下列四组线段中,能组成直角三角形的是
A.,,B.,,
C.,,D.,,
6、(4分)函数的图象如图所示,则关于的不等式的解集是( )
A.B.
C.D.
7、(4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为( )
A.B.C.4D.5
8、(4分)下列事件为必然事件的是( )
A.抛掷一枚硬币,落地后正面朝上
B.篮球运动员投篮,投进篮筐;
C.自然状态下水从高处流向低处;
D.打开电视机,正在播放新闻.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
10、(4分)若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.
11、(4分)如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.
12、(4分)如图,直线y=-x-与x,y两轴分别交于A,B两点,与反比例函数y=的图象在第二象限交于点C.过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的纵坐标为___.
13、(4分)如图,,请写出图中一对相等的角:______;
要使成立,需再添加的一个条件为:______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知平行四边形ABCD的周长是32 cm,,,,E,F是垂足,且
(1)求的度数;
(2)求BE,DF的长.
15、(8分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有( )
A.1个B.2个C.3个D.4个
16、(8分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?
17、(10分)给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).
18、(10分)如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)
(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;
(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:____.
20、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是________小时.
21、(4分)当k=_____时,100x2﹣kxy+49y2是一个完全平方式.
22、(4分)计算:=_____.
23、(4分)化简:=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角坐标系中,四边形OABC为矩形,A(6,0),C(0,3),点M在边OA上,且M(4,0),P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度分别为每秒1个单位、每秒2个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标.
(2)分别求当t=1,t=3时,线段PQ的长.
(3)求S与t之间的函数关系式.
(4)直接写出L落在第一象限的角平分线上时t的值.
25、(10分)(1)分解因式:;(2)利用分解因式简便计算:
26、(12分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.
(1)证明:;
(2)判断与的位置关系,并证明你的结论;
(3)求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:先由m+n﹣p=0,得出m﹣p=﹣n,m+n=p,n﹣p=﹣m,再根据m(﹣)+n(﹣)﹣p(+)=+﹣代入化简即可.
详解:∵m+n﹣p=0,∴m﹣p=﹣n,m+n=p,n﹣p=﹣m,∴m(﹣)+n(﹣)﹣p(+)=﹣+﹣﹣﹣=+﹣=+﹣=﹣1﹣1﹣1=﹣1.
故选A.
点睛:本题考查了分式的加减,用到的知识点是约分、分式的加减,关键是把原式变形为+﹣.
2、C
【解析】
分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.
详解:由勾股定理,得:M=25﹣9=1.
故选C.
点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.
3、C
【解析】
找到当x≥﹣2函数图象位于x轴的下方的图象即可.
【详解】
∵不等式kx+b≤0的解集是x≥﹣2,
∴x≥﹣2时,y=kx+b的图象位于x轴的下方,C选项符合,
故选:C.
本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.
4、A
【解析】
由题意知,200,210,210,210,220,220,220,220,230,230,230,故众数中位数都是220,
故选A.
5、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A.1²+2²≠3²,故不是直角三角形,故本选项错误;
B.2²+3²≠4²故不是直角三角形,故本选项错误;
C.2²+4²≠5²,故不是直角三角形,故本选项错误;
D.3²+4²=5 ²,故是直角三角形,故本选项正确.
故选D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
6、C
【解析】
解一元一次不等式ax+b>0(或<0)可以归结为以下两种:(1)从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;(2)从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有点的横坐标所构成的集合。
【详解】
观察图像,可知在x轴的上方所有x的取值,都满足y>0,结合直线过点(-2,0)
可知当x>-2时,都有y>0
即x>-2时,一元一次不等式kx+b>0.
故选:C
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象求解
7、C
【解析】
设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,
∵D是BC的中点,
∴BD=3,
在Rt△BQD中,x2+32=(9﹣x)2,
解得:x=1.
故线段BQ的长为1.
故选:C.
此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.
8、C
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、抛掷一枚硬币,落地后正面朝上是随机事件;
B、篮球运动员投篮,投进篮筺是随机事件;
C、自然状态下水从高处流向低处是必然事件;
D、打开电视机,正在播放新闻是随机事件;
故选:C.
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
10、1
【解析】
直接把x=−1代入一元二次方程ax2−bx−1=0中即可得到a+b的值.
【详解】
解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得a+b﹣1=0,
所以a+b=1.
故答案为1
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
11、-1
【解析】
根据平方差公式求出即可.
【详解】
解:∵a+b=8,a﹣b=﹣5,
∴a2﹣b2
=(a+b)(a﹣b)),
=8×(﹣5),
=﹣1,
故答案为:﹣1.
本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.
12、
【解析】
作CH⊥x轴于H,如图,先利用一次函数解析式确定B(0,-),A(-3,0),再利用三角函数的定义计算出∠OAB=30°,则∠CAH=30°,设D(-3,t),则AC=AD=t,接着表示出CH=AC=t,AH=CH=t得到C(-3-t,t),然后利用反比例函数图象上点的坐标特征得到(-3-t)•t=3t,最后解方程即可.
【详解】
作CH⊥x轴于H,如图,
当x=0时,y=-x-=-,则B(0,-),
当y=0时,-x-=0,解得x=-3,则A(-3,0),
∵tan∠OAB=,
∴∠OAB=30°,
∴∠CAH=30°,
设D(-3,t),则AC=AD=t,
在Rt△ACH中,CH=AC=t,AH=CH=t,
∴C(-3-t,t),
∵C、D两点在反比例函数图象上,
∴(-3-t)•t=3t,解得t=2,
即D点的纵坐标为2.
故答案为2.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
13、(答案不唯一) ∠2=∠3(答案不唯一)
【解析】
根据平行线的性质进行解答即可得答案.
【详解】
解:如图,AB//CD,请写出图中一对相等的角:答案不唯一:∠2=∠A,或∠3=∠B;
要使∠A=∠B成立,需再添加的一个条件为:∠2=∠B或∠3=∠A或∠2=∠3,或CD是∠ACE的平分线.
故答案为:∠2=∠A(答案不唯一):∠2=∠3(答案不唯一).
本题考查了平行线的性质,正确运用数形结合思想进行分析是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)∠C=60°;(2)BE=5cm,DF=3cm.
【解析】
(1)结合已知条件,由四边形的内角和为360°即可解答;(2)根据平行四边形的性质结合已知条件求得AB=10cm,BC=6cm.再根据30°角直角三角形的性质即可求解.
【详解】
(1)∵AE⊥BC,AF⊥CD,
∴∠AFD=∠AEB=90°,
∴∠EAF+∠C=360°﹣90°﹣90°=180°.
又∵∠EAF=2∠C,
∴∠C=60°.
(2)∵▱ABCD的周长是32cm,,
∴AB=10cm,BC=6cm.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABE=∠C=60°,
在Rt△ABE中,BE=AB,
∵AB=10 cm,
∴BE=5 cm,
同理DF=3 cm.
∴BE=5cm,DF=3cm.
本题考查了平行四边形的性质及30°角直角三角形的性质,熟练运用有关性质是解决问题的关键.
15、C
【解析】
连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,AG≠DG,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵点E、F、H分别是AB、BC、CD的中点,
∴BE=CF,
在△BCE与△CDF中,
,
∴△BCE≌△CDF,(SAS),
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF;故①正确;
在Rt△CGD中,H是CD边的中点,
∴HG=CD=AD,
即2HG=AD;故④正确;
连接AH,如图所示:
同理可得:AH⊥DF,
∵HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD;
若AG=DG,则△ADG是等边三角形,
则∠ADG=60°,∠CDF=30°,
而CF=CD≠DF,
∴∠CDF≠30°,
∴∠ADG≠60°,
∴AG≠DG,故②错误;
∴∠DAG=2∠DAH,
同理:△ADH≌△DCF,
∴∠DAH=∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠CHG=∠DAG;故③正确;
正确的结论有3个,
故选C.
此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
16、摩托车的速度是40km/h,抢修车的速度是60km/h.
【解析】
试题分析:设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.
试题解析:设摩托车的是xkm/h,
x=40
经检验x=40是原方程的解.
40×1.5=60(km/h).
摩托车的速度是40km/h,抢修车的速度是60km/h.
考点:分式方程的应用.
17、答案不唯一,详见解析
【解析】
选择第一个与第二个,第一个与第三个,利用整式的加法运算法则计算,然后再利用提公因式法或平方差公式进行因式分解即可.
【详解】
情形一:
情形二:
此题主要考查了多项式的计算,以及分解因式,关键是正确求出多项式的和,找出公因式.
18、(1)见解析;(2)见解析
【解析】
(1)B、C、D保持不动,延长CD边的对边,使AB=CD,则四边形ABCD是格点平行四边形;
(2)把正方形的一边作为平行四边形的对角线,这边的对边中点作为平行四边形的一个顶点,然后根据对角线互相平分的四边形是平行四边形作图即可.
【详解】
(1)解:如图1中,平行四边形ABCD即为所求(答案不唯一)
(2)解:如图2中平行四边形ABCD即为所求( 答案不唯一 )
本题考查作图,解题关键在于熟悉所做图形的基本性质与判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先提取4,然后利用平方差公式计算.
【详解】
原式=4(m2-9)=4(m+3)(m-3),
故答案是:4(m+3)(m-3)
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.
20、2.1
【解析】
依据加权平均数的概念求解可得.
【详解】
解:这10名学生周末利用网络进行学习的平均时间是:
;
故答案为:2.1.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
21、±1.
【解析】
利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2= a2±2ab+b2.
【详解】
∵100x2﹣kxy+49y2是一个完全平方式,
∴k=±1.
故答案为:±1.
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
22、
【解析】
先通分,再把分子相加减即可.
【详解】
解:原式=
故答案为:
本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.
23、1
【解析】
根据二次根式的乘法 ,化简即可得解.
【详解】
解:==1.
故答案为:1.
本题主要考查二次根式的乘法法则,熟悉掌握法则是关键.
二、解答题(本大题共3个小题,共30分)
24、(1)P(1+t,0)(0≤t≤1);(2)当t=1时, PQ=2,当t=2时, PQ=3;(2)S=;(1)t=或s时,L落在第一象限的角平分线上.
【解析】
(1)求出OP的长即可解决问题;
(2)法两种情形分别求出MQ、PM的长即可解决问题;
(2)法三种情形:①如图1中,当0≤t≤1时,重叠部分是正方形PQLR;②如图2中,当1<t≤2时,重叠部分是四边形PQDE;③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,分别求解即可;
(1)根据OQ=PQ,构建方程即可解决问题.
【详解】
解:(1)如图1中,∵M(1,0),
∴OM=1.PM=t,
∴OP=1+t,
∴P(1+t,0)(0≤t≤1).
(2)当t=1时,MQ=2,MP=1,
∴PQ=2.
当t=2时,MQ=2,PM=2,
∴PQ=2+2=3.
(2)①如图1中,当0≤t≤1时,重叠部分是正方形PQLR,S=PQ2=9t2
②如图2中,当1<t≤2时,重叠部分是四边形PQDE,S=PQ•DQ=9t.
③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,S=AQ•AB=2[6-2(t-2)]=-6t+20.
综上所述,S=.
(1)L落在第一象限的角平分线上时,OQ=LQ=PQ,
∴1-2t=2t或2(t-2)=t+1-2(t-2),
解得t=或.
∴t=或s时,L落在第一象限的角平分线上.
本题考查四边形综合题、矩形的性质、正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会由方程的思想思考问题,属于中考压轴题.
25、(1);(2)1.
【解析】
(1)先提公因式,再利用平方差公式进行计算即可
(2)运用完全平方公式,将因式因式分解即可
【详解】
解:(1)原式
(2)原式=2019 -2019×2×2020+2020
此题考查因式分解的应用,掌握运算法则是解题关键
26、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.
【解析】
(1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;
(2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;
(3)求出EM、EN,然后利用勾股定理列式计算即可得解.
【详解】
解:(1)∵BE、CF是锐角△ABC的两条高,
∴∠ABE+∠A=90°,∠ACF+∠A=90°,
∴∠ABE=∠ACF;
(2)MN垂直平分EF.
证明:如图,连接EM、FM,
∵BE、CF是锐角△ABC的两条高,M是BC的中点,
∴EM=FM=BC,
∵N是EF的中点,
∴MN垂直平分EF;
(3)∵EF=6,BC=24,
∴EM=BC=×24=12,EN=EF=×6=3,
由勾股定理得,MN=.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
时间(单位:小时)
4
3
2
l
0
人数
3
4
1
1
1
2024年北京市通州区名校九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2024年北京市通州区名校九年级数学第一学期开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
[数学]2024~2025学年北京市朝阳区人大附中朝阳校区九年级上学期开学试题(有答案): 这是一份[数学]2024~2025学年北京市朝阳区人大附中朝阳校区九年级上学期开学试题(有答案),共13页。
北京市通州区名校2023-2024学年九年级数学第一学期期末预测试题含答案: 这是一份北京市通州区名校2023-2024学年九年级数学第一学期期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,点A所在的象限是,下列实数等内容,欢迎下载使用。