2024年北京市丰台区名校数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要使二次根式有意义,则x的取值范围在数轴上表示正确的是( )
A.B.
C.D.
2、(4分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(-3,1)B.(4,1)
C.(-2,1)D.(2,-1)
3、(4分)如图,在中,,,,则( )
A.3B.C.D.6
4、(4分)以下列长度(单位:cm)为边长的三角形是直角三角形的是( )
A.3,4,5B.1,2,3C.5,7,9D.6,10,12
5、(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是( )
A.∠B=30°B.AD=BD
C.∠ACB=90°D.△ABC是直角三角形
6、(4分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( )
A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0
7、(4分)直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为( )
A.x>﹣2B.x<1C.x>1D.x<﹣2
8、(4分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点D是直线外一点,在上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是:_________________________
.
10、(4分)二项方程在实数范围内的解是_______________
11、(4分)已知▱ABCD的周长为40,如果AB:BC=2:3,那么AB=_____.
12、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
13、(4分)数据、、、、的方差是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):
(1)求y1的函数解析式;
(2)请问方案二中每月付给销售人员的底薪是多少元?
(3)小丽应选择哪种销售方案,才能使月工资更多?
15、(8分)某村为绿化村道,计划在村道两旁种植 A、B 两种树木,需要购买这两种树苗 800 棵,A、B 两种树苗的相关信息如表:
设购买 A 种树苗 x 棵,绿化村道的总费用为 y 元,解答下列问题:
(1)求出 y 与 x 之间的函数关系式.
(2)若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要多少元?
(3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗多少棵?
16、(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
17、(10分)先化简,再求值:(x+2+)÷,其中x=2.
18、(10分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.
20、(4分)若不等式组无解,则的取值范围是_______.
21、(4分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为_____.
22、(4分)已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.
23、(4分)二次根式有意义的条件是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.
25、(10分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为
A.平行四边形
B.菱形
C.矩形
D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
求证:四边形AFF′D是菱形.
26、(12分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:
(1)求与之间的函数关系式,并写出的取值范围;
(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
直接利用二次根式有意义的条件得出x的取值范围进而得出答案.
【详解】
解:要使二次根式有意义,
则x≥0,
则x的取值范围在数轴上表示为:.
故选:B.
本题主要考查了二次根式有意义的条件,正确理解二次根式的定义是解题的关键.
2、A
【解析】
解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,
故选A.
3、A
【解析】
根据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求解.
【详解】
解:∵在△ABC中,∠C=90°,∠A=30°,
∴BC= AB= ×6=3,
故选:A.
本题考查了含30度的直角三角形的性质,正确掌握定理是解题的关键.
4、A
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
A. 因为3+4=5,所以三条线段能组成直角三角形;
B. 因为1+2≠3,所以三条线段不能组成直角三角形;
C. 因为5+7≠9,所以三条线段不能组成直角三角形;
D. 因为6+10≠12,所以三条线段不能组成直角三角形;
故选:A.
此题考查勾股定理的逆定理,难度不大
5、A
【解析】
根据CD是△ABC的边AB上的中线,且CDAB,即可得到等腰三角形,进而得出正确结论.
【详解】
∵CD是△ABC的边AB上的中线,∴AD=BD,故B选项正确;
又∵CDAB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,∴∠ACB=180°90°,故C选项正确;
∵∠ACB=90°,∴△ABC是直角三角形,故D选项正确.
故选A.
本题考查了直角三角形的判定,等腰三角形性质的应用.解题的关键是熟练运用鞥要三角形的性质.
6、D
【解析】
∵A,B是不同象限的点,而正比例函数的图象要不在一、三象限,要不在二、四象限,
∴由点A与点B的横纵坐标可以知:
点A与点B在一、三象限时:横纵坐标的符号应一致,显然不可能;
点A与点B在二、四象限:点B在二象限得n<0,点A在四象限得m<0.
故选D.
7、B
【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b<mx+n解集.
【详解】
解:观察图象可知,当x<1时,ax+b<mx+n,
∴不等式ax+b<mx+n的解集是x<1
故选B.
本题考查了一次函数与一元一次不等式的关系,根据交点得到相应的解集是解决本题的关键.
8、C
【解析】
要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、两组对边分别相等的四边形是平行四边形.
【解析】
先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,根据“两组对边分别相等的四边形是平行四边形”可判断四边形ABCD是平行四边形.
【详解】
解:根据尺规作图的作法可得,AB=DC,AD=BC,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)
故答案为两组对边分别相等的四边形是平行四边形.
本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.
10、x=-1
【解析】
由2x1+54=0,得x1=-27,解出x值即可.
【详解】
由2x1+54=0,得x1=-27,
∴x=-1,
故答案为:x=-1.
本题考查了立方根,正确理解立方根的意义是解题的关键.
11、1.
【解析】
根据平行四边形的性质推出AB=CD,AD=BC,设AB=2a,BC=3a,代入得出方程2(2a+3a)=40,求出a的值即可.
【详解】
∵平行四边形ABCD的周长为40cm,AB:BC=2:3,
可以设AB=2a,BC=3a,
∴AB=CD,AD=BC,AB+BC+CD+AD=40,
∴2(2a+3a)=40,
解得:a=4,
∴AB=2a=1,
故答案为:1.
本题考查了平行四边形的性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a)=40,用的数学思想是方程思想,题目比较典型,难度也适当.
12、1.
【解析】
根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
【详解】
解:y=x-4,
当y=0时,x-4=0,
解得:x=4,
即OA=4,
过B作BC⊥OA于C,
∵△OAB是以OA为斜边的等腰直角三角形,
∴BC=OC=AC=2,
即B点的坐标是(2,2),
设平移的距离为a,
则B点的对称点B′的坐标为(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距离是4,
∴Rt△OAB扫过的面积为:4×2=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
13、
【解析】
分析:先求平均数,根据方差公式求解即可.
详解:数据1,2,3,3,6的平均数
∴数据1,2,3,3,6的方差:
故答案为:
点睛:考查方差的计算,记忆方差公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)方案二中每月付给销售人员的底薪是560元;(3)当销售件数少于70件时,提成方案二好些;当销售件数等于70件时,两种提成方案一样;当销售件数多于70件时,提成方案一好些.
【解析】
解:(1)设所表示的函数关系式为,由图象,得
解得:,
所表示的函数关系式为;
(2)∵每件商品的销售提成方案二比方案一少8元,
把代入得解得
方案二中每月付给销售人员的底薪是560元;
(3)由题意,得
方案一每件的提成为元,
方案二每件的提成为元,
设销售m件时两种工资方案所得到的工资数额相等,由题意,得
,
解得:.
销售数量为70时,两种工资方案所得到的工资数额相等;
当销售件数少于70件时,提成方案二好些;
当销售件数等于70件时,两种提成方案一样;
当销售件数多于70件时,提成方案一好些.
15、(1)y=—50x+136000;(2)111000 元.(3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
【解析】分析:(1)设购买A种树苗x棵,则购买B种树苗(800﹣x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;
(2)根据这批树苗种植后成活了 670 棵,列出关于x的一元一次方程,求出x的值,即可求解.
(3)根据总费用不超过 120000 元,列出关于x的一元一次不等式,求解即可.
详解:(1)设购买 A 种树苗 x 棵,则购买 B 种树苗(800—x)棵,依题意得:
y=(100+20)x+(150+20)×(800—x)=—50x+136000
(2)由题意得:80%x+90%(800—x)=670
解得:x=500
当 x=500 时,y=—50×500+136000=111000(元).
答:若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要 111000 元.
(3)由(1)知购买 A 种树苗 x 棵,购买 B 种树苗(800—x)棵时,
总费用 y=—50x+136000,由题意得:
—50x+136000≤120000
解得:x≥320
∴800—x≤1.
故最多可购买 B 种树苗 1 棵.
答:若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
点睛:本题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等式,明确不等关系的语句“不超过”的含义.
16、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).
【解析】
(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出点B′、C′的坐标即可;
(3)根据平移规律写出即可.
【详解】
解:(1)△A′B′C′如图所示;
(2)B′(﹣4,1)、C′(﹣1,﹣1);
(3)∵点A(3,4)、A′(﹣2,2),
∴平移规律为向左平移5个单位,向下平移2个单位,
∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).
故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).
本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
17、,4-2.
【解析】
【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把x的值代入进行计算即可得.
【详解】原式=()÷
=
=
=,
当x=2时,原式===2(2-)=4-2.
【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.
18、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
【解析】
(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
(2)5月份盈利=4月份盈利×增长率.
【详解】
(1)设该商店的每月盈利的平均增长率为x,根据题意得:
3000(1+x)2=4320,
解得:x1=20%,x2=-2.2(舍去).
(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
4320×(1+20%)=5184(元).
答:(1)该商店的每月盈利的平均增长率为20%.
(2)5月份盈利为5184元.
此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
【详解】
解:设这个正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(3,−6),
∴−6=3k,
解得k=−2,
∴y=−2x.
故答案是:y=−2x.
此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
20、
【解析】
先求出两个不等式的解集,再求其公共解,然后根据大大小小找不到(无解)列出关于a的不等式求解即可.
【详解】
由①得,x>2,
由②得,x<3-a,
∵不等式组的无解,
∴3-a≤2,
∴a≥1.
故答案为:a≥1.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
21、85.4 分
【解析】
根据加权平均数的概念,注意相对应的权比即可求解.
【详解】
8030%+9050%+8220%=85.4
本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.
22、
【解析】
过作交的延长线于,构造.首先求出是等腰直角三角形,从而推出与的关系.
【详解】
解:如图:过作交的延长线于,过作于.
,,
四边形是平行四边形,
,,
等腰梯形中,,
,
,,
,
是等腰直角三角形,
,
又,
,
即梯形的高为.
故答案为:.
本题考查了等腰梯形性质,作对角线的平行线将上下底和对角线移到同一个三角形中是解题的关键,也是梯形辅助线常见作法.
23、
【解析】
根据被开方式大于零列式求解即可.
【详解】
由题意得
x-3>0,
∴x>3.
故答案为:x>3.
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
二、解答题(本大题共3个小题,共30分)
24、(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.
【解析】
(1)根据平均数和中位数的定义求解可得;
(2)根据方差的定义计算出乙的方差,再比较即可得.
【详解】
(1)甲的平均数:,
乙的平均数:,
乙的中位数:9;
(2) .
∵,
∴甲组学生的成绩比较稳定.
本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
25、(1)C;(2)详见解析.
【解析】
(1)根据矩形的判定可得答案;
(2)利用勾股定理求得AF=5,根据题意可得平行四边形AFF′D四边都相等,即可得证.
【详解】
解:(1)由题意可知AD与EE′平行且相等,
∵AE⊥BC,
∴四边形AEE′D为矩形
故选C;
(2) ∵AD=5,S□ABCD=15,∴AE=3,
又∵在图2中,EF=4,
∴在Rt△AEF中,AF=,
∴AF=AD=5,
又∵AF∥DF′,AF=DF′,
∴四边形AFF′D是平行四边形,
又∵AF=AD,
∴四边形AFF′D是菱形.
26、(1);(2)该月这种衣服的销售单价为每件元
【解析】
(1)根据点的坐标,利用待定系数法可求出每月销售量y与销售单价x之间的函数关系式;
(2)根据总利润=每千克的利润×月销售数量,即可得出关于x的一元二次方程,解之即可得出结论.
【详解】
解:(1)依题意可设,
由图像得:点都在的图像上,
,
与之间的函数关系式:,
由图象得,的取值范围:;
(2)依题意得:,
,
解得: (舍去);
∴该月这种衣服的销售单价为每件元.
本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
题号
一
二
三
四
五
总分
得分
树苗
单价(元/棵)
成活率
植树费(元/棵)
A
100
80%
20
B
150
90%
20
平均数
众数
中位数
甲
______________
8
8
乙
______________
9
______________
2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市第一零一中学九上数学开学经典试题【含答案】: 这是一份2024年北京市第一零一中学九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,一象限B.第二,填空题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。