


2024年北京市通州区名校九年级数学第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,中,于点,点为的中点,连接,则的周长是( )
A.4+2B.7+C.12D.10
2、(4分)不等式组的整数解有三个,则a的取值范围是( )
A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<0
3、(4分)点关于原点的对称点的坐标为( )
A.B.C.D.
4、(4分)下列各式:,,,,(x+y)中,是分式的共有( )
A.1个B.2个C.3个D.4个
5、(4分)如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是( )
A.B.C.4D.3
6、(4分)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为( )
A.6cmB.8cmC.5cmD.4cm
7、(4分)下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5B.5,7,8C.8,15,17D.1,
8、(4分)如图直线:与直线:相交于点P(1,2).则关于x的不等式的解集为( )
A.x<1B.x>2C.x>1D.x<2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则m=__
10、(4分)已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是_____.
11、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
12、(4分)如图所示,直线y=kx+b经过点(﹣2,0),则关于x的不等式kx+b<0的解集为_____.
13、(4分)__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.
(1)求y与x之间的函数关系式;
(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.
15、(8分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级班40名学生读书册数的情况如表
根据表中的数据,求:
(1)该班学生读书册数的平均数;
(2)该班学生读书册数的中位数.
16、(8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.
请解答下列问题:
(1)在这次调查中,样本容量为 ;
(2)补全条形统计图;
(3)“乘车”所对应的扇形圆心角为 °;
(4)若该学校共有2000名学生,试估计该学校学生中选择“步行”方式的人数.
17、(10分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,
(1)过小时后他俩的距离是多少?
(2)经过多少时间,他俩的距离是?
18、(10分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.
(1)求证:四边形ADCE是矩形.
(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,,是边的中点,点是边上的一动点,将沿折叠,使得点落在处,连接,,当点落在矩形的对称轴上,则的值为______.
20、(4分)若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.
21、(4分)若,则________.
22、(4分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=_____.
23、(4分)如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.
已知:平行四边形ABCD.
求作:点M,使点M 为边AB 的中点.
作法:如图,
①作射线DA;
②以点A 为圆心,BC长为半径画弧,
交DA的延长线于点E;
③连接EC 交AB于点M .
所以点M 就是所求作的点.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= ,
∴四边形EBCA 是平行四边形( )(填推理的依据) .
∴AM =MB ( )(填推理的依据) .
∴点M 为所求作的边AB的中点.
25、(10分)已知1<x<2,,则的值是_____.
26、(12分)已知:a,b,c为一个直角三角形的三边长,且有,求直角三角形的斜边长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.
【详解】
∵在△ABC中,AB=AC=6,AE平分∠BAC,
∴BE=CE=BC=4,
又∵D是AB中点,
∴BD=AB=3,
∴DE是△ABC的中位线,
∴DE=AC=3,
∴△BDE的周长为BD+DE+BE=3+3+4=1.
故选:D.
本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.
2、B
【解析】
根据不等式组的整数解有三个,确定出a的范围即可.
【详解】
∵不等式组的整数解有三个,
∴这三个整数解为2、1、0,
则﹣1<a≤0,
故选:B.
此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.
3、A
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).
故选:A .
本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.
4、C
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
,,分母中含有字母,因此是分式;
,的分母中均不含有字母,因此它们是整式,而不是分式.
故分式有3个.
故选C.
本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.
5、A
【解析】
利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可
【详解】
如图,作DH⊥AC于H,
∵
∴5(x-2)=3x
∴x=5
经检验:x=5是分式方程的解
∵AC长是分式方程的解
∴AC=5
∵∠B=90°
∴DB⊥AB,DH⊥AC
∵AD平分∠BAC,
∴DH=DB=
S=
故选A
此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线
6、D
【解析】
根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.
【详解】
根据折叠前后角相等可知∠DCA=∠ACO,
∵四边形ABCD是矩形,
∴AB∥CD,AD=BC=4cm,
∴∠DCA=∠CAO,
∴∠ACO=∠CAO,
∴AO=CO,
在直角三角形BCO中,CO= =5cm,
∴AB=CD=AO+BO=3+5=8cm,
在Rt△ABC中,AC=cm,
故选:D.
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
7、B
【解析】
根据勾股定理的逆定理依次判断各项后即可解答.
【详解】
选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;
选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;
选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;
选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.
故选B.
本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.
8、C
【解析】
根据函数图象交点右侧直线图象在直线:图象的上面,即可得出不等式的解集.
【详解】
解:直线与直线交于点,
不等式解集为.
故选:C
此题主要考查了一次函数与不等式关系,利用数形结合得出不等式的解集是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用多项式乘以多项式计算(x-m)(x+2)可得x2+(2-m)x-2m,然后使x的一次项系数相等即可得到m的值.
【详解】
∵(x-m)(x+2)=x2+(2-m)x-2m,
∴2-m=-6,
m=1,
故答案是:1.
考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
10、20
【解析】
首先根据△ABC中,点D、E、F分别是AB、AC、BC的中点,判断出四边形DBFE和四边形DFCE为平行四边形,又根据平行四边形的性质,求出DE、EF、DF的值,进而得出△DEF的周长.
【详解】
解:∵△ABC中,点D、E、F分别是AB、AC、BC的中点,
∴DE∥BC,DF∥AC,EF∥AB
∴四边形DBFE和四边形DFCE为平行四边形,
又∵AB=12,AC=13,BC=15,
∴DB=EF=AB=6
DF=CE=AC=6.5
DE=FC=BC=7.5
∴△DEF的周长是DE+EF+DF=7.5+6+6.5=20.
此题主要考查平行四边形的判定,即可得解.
11、45°.
【解析】
根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
【详解】
解:∵AC=BC=,AB=2,
∴AC2+BC2=2+2=4=22=AB2,
∴△ABC是等腰直角三角形,
∴△ABC中的最小角是45°;
故答案为:45°.
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
12、x<﹣1.
【解析】
结合函数图象,写出直线在轴下方所对应的自变量的范围即可.
【详解】
∵直线经过点(-1,0),
∴当时,,
∴关于的不等式的解集为.
故答案为:.
本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.
13、
【解析】
把变形为,逆用积的乘方法则计算即可.
【详解】
原式=
=
=.
故答案为:.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
三、解答题(本大题共5个小题,共48分)
14、(1)y=−x+180;(2)120元或160元;
【解析】
(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;
(2)根据题意列出方程,解方程即可.
【详解】
(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由所给函数图象可知: ,
解得:
故y与x的函数关系式为y=−x+180;
(2)由题意得:(−x+180)(x−100)=1200,
解得:x=120,或x=160.
答:若某天该网店店主销售该产品获得的利润为1200元,则销售单价为120元或160元.
此题考查一元二次方程的应用,一次函数的应用,解题关键在于列出方程
15、 (1) 该班学生读书册数的平均数为册.(2) 该班学生读书册数的中位数为册.
【解析】
(1)根据平均数=读书册数总数÷读书总人数,求出该班同学读书册数的平均数;
(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.
【详解】
解:该班学生读书册数的平均数为:册,
答:该班学生读书册数的平均数为册.
将该班学生读书册数按照从小到大的顺序排列,
由图表可知第20名和第21名学生的读书册数分别是6册和7册,
故该班学生读书册数的中位数为:册.
答:该班学生读书册数的中位数为册.
本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
16、(1)50;(2)图略;(3) ;(4)600.
【解析】
(1)用此次调查的乘车的学生数除以其占比即可得到样本容量;
(2)用调查的总人数减去各组人数即可得到步行的人数,即可补全统计图;
(3)用360°×40%即可得到“乘车”所对应的扇形圆心角度数;
(4)用2000乘以“步行”方式的占比即可.
【详解】
(1)样本容量为20÷40%=50
(2)步行的人数为50-20-10-5=15(人)
补全统计图如下:
(3)“乘车”所对应的扇形圆心角为40%×360°=144°
(4)估计该学校学生中选择“步行”方式的人数为2000×=600(人)
此题主要考查统计调查,解题的关键是根据统计图求出样本容量.
17、(1)5t;(2)3小时
【解析】
(1)根据两人行驶的路线围成一个直角三角形,利用勾股定理求解即可;
(2)利用(1)中所求,结合两人距离为15km,即可求出时间.
【详解】
(1)∵甲以3km/h的速度沿正北方向前行;乙以4km/h的速度沿正东方向前行,
∴两人行驶的路线围成一个直角三角形,
∴过t个小时后他俩的距离是:,
答:过t个小时后他俩的距离是5tkm;
(2)由题意可得:5t=15,
解得:t=3,
答:经过3小时,他俩的距离是15km.
本题考查了勾股定理的实际应用,解题的关键是从实际问题中整理出直角三角形模型,利用勾股定理解决问题.
18、(1)证明见解析;(2)1.
【解析】
分析:(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.
(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.
详解:(1)∵四边形ABDE是平行四边形,
∴AB=DE,
又∵AB=AC,
∴DE=AC.
∵AB=AC,D为BC中点,
∴∠ADC=90°,
又∵D为BC中点,
∴CD=BD.
∴CD∥AE,CD=AE.
∴四边形AECD是平行四边形,
又∴∠ADC=90°,
∴四边形ADCE是矩形.
(2)∵四边形ADCE是矩形,
∴AO=EO,
∴△AOE为等边三角形,
∴AO=4,
故AC=1.
点睛:本题考查了矩形的判定和性质,二者结合是常见的出题方式,要注意灵活运用等边三角形的性质、等腰三角形的性质和三角形中位线的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据旋转的性质在三角形EHG中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.
【详解】
解:如下图过点E作EH垂直对称轴与H,连接BG,
∵,,
∴BE=EG=1,EH=,
∴∠EGH=30°,
∴∠BEG=30°,
由旋转可知∠BEF=15°,BG⊥EF,
∴∠EBG=75°,∠GBF=∠BCG=15°,即
∴m=2
故答案是:2
本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.
20、0(答案不唯一)
【解析】
利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.
【详解】
△=62-4m≥0,
解得m≤9;
当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,
所以m=0满足条件.
故答案为:0(答案不唯一).
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
21、
【解析】
由,得到a=b,代入所求的代数式,即可解决问题.
【详解】
∵,
∴a=b,
∴,
故答案为:.
该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.
22、8
【解析】
根据题意,已知直角三角形的一条直角边和斜边长,求另一直角边时直接利用勾股定理求斜边长即可.据此解答即可.
【详解】
解:由勾股定理的变形公式可得b==8,
故答案为:8.
本题考查了勾股定理的运用,属于基础题. 本题比较简单,解答此类题的关键是灵活运用勾股定理,可以根据直角三角形中两条边求出另一条边的长度.
23、a>b>d>c
【解析】
设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.
【详解】
因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),
所以,a>b>d>c.
本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析
【解析】
(1)根据要求作出点M即可.
(2)首先证明四边形EBCA 是平行四边形,再利用平行四边形的性质解决问题即可.
【详解】
解:(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= BC ,
∴四边形EBCA 是平行四边形(一组对边平行且相等的四边形是平行四边形 )(填推理的依据) .
∴AM =MB (平行四边形的对角线互相平分 )(填推理的依据) .
∴点M 为所求作的边AB的中点.
故答案为(1)详见解析;(2)详见解析.
本题考查作图-复杂作图,平行四边形的判定和性质,解题的关键是掌握平行四边形的判定和性质.
25、2.
【解析】
变形后即可求出()2+()2=6,再根据完全平方公式求出即可.
【详解】
解:∵
∴
即()2+()2=6,
∵1<x<2,
∴ > ,
∴
=
=
=
=2.
故答案为:2.
本题考查二次根式的混合运算和求值,完全平方公式等知识点,能灵活运用公式进行计算是解题关键.
26、该直角三角形的斜边长为3或.
【解析】
试题分析:根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长.
试题解析:解:∵,∴a﹣3=2,b﹣1=2,解得:a=3,b=1.
①以a为斜边时,斜边长为3;
②以a,b为直角边的直角三角形的斜边长为=.
综上所述:即直角三角形的斜边长为3或.
点睛:本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为2时,则其中的每一项都必须等于2.
题号
一
二
三
四
五
总分
得分
读书册数
4
5
6
7
8
人数人
6
4
10
12
8
2024年北京市石景山区名校数学九上开学学业质量监测试题【含答案】: 这是一份2024年北京市石景山区名校数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市密云县名校九上数学开学学业质量监测试题【含答案】: 这是一份2024年北京市密云县名校九上数学开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京市通州区名校九上数学开学质量检测试题【含答案】: 这是一份2024-2025学年北京市通州区名校九上数学开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。