2024-2025学年北京朝阳区第十七中学九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是( )
A.AB=5B.∠C=90°C.AC=2D.∠A=30°
2、(4分)小华用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,则他摆完这个直角三角形共用火柴棒( )
A.25根B.24根C.23根D.22根
3、(4分)如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A.B.C.D.
4、(4分)正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等
5、(4分)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )
A.24mB.22mC.20mD.18m
6、(4分)下列命题中,错误的是( )
A.过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形
B.斜边和一条直角边分别对应相等的两个直角三角形全等
C.三角形的中线将三角形分成面积相等的两部分
D.一组对边平行另一组对边相等的四边形是平行四边形
7、(4分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图1.两次旋转的角度分别为( )
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
8、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是边AB、AD的中点,连接EF,若,,则菱形ABCD的面积为
A.24B.20C.5D.48
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知中,,角平分线BE、CF交于点O,则 ______ .
10、(4分)函数中,当满足__________时,它是一次函数.
11、(4分)已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.
12、(4分)某n边形的每个外角都等于它相邻内角的,则n=_____.
13、(4分)如图,在宽为10m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为 m1.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)
(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;
(2)再把△A1B1C1绕点C1 顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.
15、(8分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
16、(8分)已知:如图,Rt△ABC中,∠ACB=900,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.
求证:CE=CF.
17、(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
18、(10分)若x=3+2,y=3-2,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.
20、(4分)将直线向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第_________象限.
21、(4分)不等式的正整数解为______.
22、(4分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为___cm.
23、(4分)如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.
二、解答题(本大题共3个小题,共30分)
24、(8分)一个三角形的三边长分别为5,,.
(1)求它的周长(要求结果化简);
(2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.
25、(10分)如图,在中,点是边上的一点,且,过点作于点,交于点,连接、.
(1)若,求证:平分;
(2)若点是边上的中点,求证:
26、(12分)珠海市某中学在创建“书香校园”活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:
(1)被抽查学生阅读时间的中位数为 h,平均数为 h;
(2)若该校共有1500名学生,请你估算该校一周内阅读时间不少于3h的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先根据每个小正方形的边长为1,结合勾股定理求出AB、AC、BC的长,进而判断A、C的正误;再判断较短的两边的平方和与较长边的平方是否相等,进而可判断B的正误;在上步提示的基础上,判断BC与AB是否存在二倍关系,进而即可判断D的正误.
【详解】
∵每个小正方形的边长为1,
根据勾股定理可得:AB=5,AC=2,BC=.
故A、C正确;
∵2+(2)2=52,
∴△ABC是直角三角形,
∴∠C=90°.
故B正确;
∵∠C=90°,AC=2BC,而非AB=2BC,
∴∠A≠30°.
故D错误.
故选D.
本题考查的是三角形,熟练掌握三角形是解题的关键.
2、B
【解析】
根据勾股定理即可求得斜边需要的火柴棒的数量.再由三角形的周长公式来求摆完这个直角三角形共用火柴棒的数量
【详解】
∵两直角边分别用了6根、8根长度相同的火柴棒
∴由勾股定理,得到斜边需用:(根),
∴他摆完这个直角三角形共用火柴棒是:6+8+10=24(根).
故选B.
本题考查勾股定理的应用,是基础知识比较简单.
3、B
【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
【详解】
如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=1,∠D=90°,
在Rt△ADE中,AE===,
∵S△ABE=S矩形ABCD=1=•AE•BF,
∴BF=.
故选:B.
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
4、B
【解析】
根据正方形的性质以及菱形的性质逐项进行分析即可得答案.
【详解】
菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;
正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),
A.菱形和正方形的对角线都互相垂直,故本选项错误;
B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;
C.菱形和正方形的对角线互相平分,故本选项错误;
D.菱形和正方形的对角都相等,故本选项错误,
故选B.
本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.
5、A
【解析】
过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.
【详解】
解:过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.
由题意得:.
∴DF=DE×1.6÷2=14.4(m).
∴GF=BD=CD=6m.
又∵.
∴AG=1.6×6=9.6(m).
∴AB=14.4+9.6=24(m).
答:铁塔的高度为24m.
故选A.
6、D
【解析】
根据多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定即可依次判断.
【详解】
A. 过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,正确;
B. 斜边和一条直角边分别对应相等的两个直角三角形全等,正确;
C. 三角形的中线将三角形分成面积相等的两部分,正确;
D. 一组对边平行且相等的四边形是平行四边形,故错误;
故选D.
此题主要考查几何图形的判定与性质,解题的关键是熟知多边形的性质、全等三角形的判定、三角形中线及平行四边形的判定.
7、A
【解析】
本题考查了旋转的性质、等腰直角三角形的性质. 图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图1中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.
解:根据图1可知,
∵△ABC和△ADE是等腰直角三角形,
∴∠CAB=45°,
即△ABC绕点A逆时针旋转45°可到△ADE;
如图,
∵△ABC和△ADE是等腰直角三角形,
∴∠DAE=∠CAB=45°,
∴∠FAB=∠DAE+∠CAB=90°,
即图1可以逆时针连续旋转90°得到图1.
故选A.
8、A
【解析】
根据EF是的中位线,根据三角形中位线定理求的BD的长,然后根据菱形的面积公式求解.
【详解】
解:、F分别是AB,AD边上的中点,即EF是的中位线,
,
则.
故选A.
本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的BD的长是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.
点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.
10、k≠﹣1
【解析】
分析: 根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.
详解:由题意得,
k+1≠0,
∴k ≠-1.
故答案为k ≠-1.
点睛: 本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.
11、±5
【解析】
由勾股定理可求点A坐标,分两种情况讨论,利用全等三角形的判定和性质求出B、D的坐标,即可求解.
【详解】
解:设点A(x,0)
∴AC2=OA2+OC2,
∴26=25+OA2,
∴OA=1
∴点A(1,0),或(-1,0)
当点A(1,0)时,
如图,过点B作BF⊥x轴,过点C作CE⊥y轴,与BF交于点E,过点D作DH⊥x轴,交CE于点G,
∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°
∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°
∴△ABF≌△BCE(AAS)
∴BE=AF,BF=CE
∵OF=OA+AF
∴CE=OF=1+BE=BF
∴BF+BE=1+BE+BE=5
∴BE=2,
∴BF=3
∴点B坐标(3,3)
∴m=3×3=9,
∵A(1,0), C(0,5), B(3,3),
∴点D(1+0-3,0+5-3),即(-2,2)
∴n=-2×2=-4
∴m+n=5
若点A(-1,0)时,
同理可得:B(2,2),D(-3,3),
∴m=4,n=-9
∴m+n=-5
故答案为:±5
本题考查了反比例函数图象上点的坐标特征,正方形的性质,全等三角形的判定和性质,利用分类讨论思想解决问题和利用方程思想解决问题是本题的关键.
12、1.
【解析】
根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.
【详解】
解:因为多边形的每个外角和它相邻内角的和为180°,
又因为每个外角都等于它相邻内角的,
所以外角度数为180°×=36°.
∵多边形的外角和为360°,
所以n=360÷36=1.
故答案为:1.
本题考查多边形的内角与外角关系,以及多边形的外角和为360°.
13、2.
【解析】
试题分析:由图可得出两条路的宽度为:1m,长度分别为:10m,30m,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.
由图可以看出两条路的宽度为:1m,长度分别为:10m,30m,
所以,可以得出路的总面积为:10×1+30×1-1×1=49m1,
又知该矩形的面积为:10×30=600m1,
所以,耕地的面积为:600-49=2m1.
故答案为2.
考点:矩形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)B1的坐标(﹣5,4);(2)B2的坐标(﹣1,2).
【解析】
(1)作出各点关于原点的对称点,再顺次连接,并写出B1的坐标即可;
(2)根据图形旋转的性质画出△A2B2C2,并写出B2的坐标即可.
【详解】
(1)如图,△A1B1C1即为所求,由图可知B1的坐标(﹣5,4);
(2)如图,△A2B2C2即为所求,由图可知B2的坐标(﹣1,2).
考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
15、(1)见解析
(2)当AF=时,四边形BCEF是菱形.
【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
【详解】
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形.
∵∠ABC=90°,AB=4,BC=3,
∴AC=.
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
∴,即.∴.
∵FG=CG,∴FC=2CG=,
∴AF=AC﹣FC=5﹣.
∴当AF=时,四边形BCEF是菱形.
16、见解析.
【解析】
根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可。
【详解】
证明:∵∠ACB=90°,CD⊥AB,
∴∠CDA=90°,
∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,
∵AF平分∠CAB,
∴∠CAF=∠FAD,
∴∠CFA=∠AED=∠CEF,
即∠CEF=∠CFE
∴CE=CF.
本题考查了直角三角形性质,等腰三角形的性质和判定,三角形的内角和定理,关键是推出∠CEF=∠CFE.
17、(1)每台电冰箱的进价2000元,每台空调的进价1600元.
(2)此时应购进电冰箱33台,则购进空调67台.
【解析】
试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;
(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.
解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元
依题意得,,
解得:m=2000,
经检验,m=2000是原分式方程的解,
∴m=2000;
∴每台电冰箱的进价2000元,每台空调的进价1600元.
(2)设购进电冰箱x台,则购进空调(100﹣x)台,
根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,
∵﹣50<0,
∴W随x的增大而减小,
∵33≤x≤40,
∴当x=33时,W有最大值,
即此时应购进电冰箱33台,则购进空调67台.
18、1
【解析】
先运用平方差及完全平方公式进行因式分解,再约分,将分式化到最简即可.
【详解】
=
=
=
=1.
故当x=3+2,y=3−2时,原式=1.
本题考查了二次根式的化简求值.运用公式将分子因式分解可使运算简便.由于所求代数式化简之后是一个常数1,与字母取值无关.因而无论x、y取何值,原式都等于1.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,
∴DE=AB=1,CE=BC−BE=6−2=1,
∵∠B=∠DEC=60°,
∴△DEC是等边三角形,
∴DC=1,
故答案为1.
本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
20、四
【解析】
根据一次函数图象的平移规律,可得答案.
【详解】
解:由题意得:平移后的解析式为:,即,
直线经过一、二、三象限,不经过第四象限,
故答案为:四.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时的值不变.
21、1
【解析】
先求出不等式的解集,然后根据解集求其非正整数解.
【详解】
解:∵,
∴,
∴正整数解是:1;
故答案为:1.
本题考查了一元一次不等式的解法,解不等式的步骤有:去分母、去括号、移项、合并同类项、系数化成1,注意,系数化为1时要考虑不等号的方向是否改变.
22、6
【解析】
∵l垂直平分BC,∴DB=DC.
∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm
23、2
【解析】
先证△ADP≌△BAQ,得到AP=BQ,然后用t表示出AP与BQ,列出方程解出t即可.
【详解】
因为AQ⊥PD,所以∠BAQ+∠APD=90°
又因为正方形性质可到∠APD+∠ADP=90°,∠PAD=∠B=90°,AB=AD,
所以得到∠BAQ=∠ADP
又因为∠PAD=∠B=90°,AB=AD
所以△ADP≌△BAQ,得到AP=BQ
AP=2t,QC=t,BC=8-t
所以2t=8-2t,解得t=2s
故填2
本题考查全等三角形的性质与判定,解题关键在于证出三角形全等,得到对应边相等列出方程.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析.
【解析】
(1)周长;
(2)当x=20时,周长=(或当x=时,周长=等).
(答案不唯一,符合题意即可)
25、(1)见解析;(2)见解析.
【解析】
(1)由四边形是平行四边形,,易证得,又由,可证得,即可证得平分;
(2)延长,交的延长线于点,易证得,又由,可得是的斜边上的中线,继而证得结论.
【详解】
证明:(1)四边形是平行四边形,
,,
,
,
,
,
,
在和中,
,
,
,
平分;
(2)如图,延长,交的延长线于点,
四边形是平行四边形,
,
,
点是边上的中点,
,
在和中,
,
,
,
,
,
,
.
此题考查了平行四边形的性质、等腰三角形的性质、直角三角形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
26、(1)2h,2.34h;(2)540.
【解析】
(1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;
(2)根据总人数×阅读时间不少于三小时的百分比可得结果.
【详解】
(1)2h,2.34h
(2)被抽查一周内阅读时间不少于3h的学生人数占比为:
=36%
1500×36%=540(人)
答:被抽查一周内阅读时间不少于3h的学生人数为540
此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
北京市第四中学2024-2025学年九年级上学期开学测试数学试题: 这是一份北京市第四中学2024-2025学年九年级上学期开学测试数学试题,共8页。
北京朝阳区第十七中学2023-2024学年数学九年级第一学期期末经典试题含答案: 这是一份北京朝阳区第十七中学2023-2024学年数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了有下列四种说法等内容,欢迎下载使用。
北京六中学2023-2024学年数学九年级第一学期期末调研模拟试题含答案: 这是一份北京六中学2023-2024学年数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。