


初中数学人教版(2024)九年级上册22.1.1 二次函数习题
展开
这是一份初中数学人教版(2024)九年级上册22.1.1 二次函数习题,共18页。试卷主要包含了已知二次函数y=x2+ax+b,若一个点的坐标满足,设二次函数y=a,设函数y=a等内容,欢迎下载使用。
一.选择题(共10小题)
1.下列函数解析式中,一定为二次函数的是( )
A.y=3x﹣1B.y=ax2+bx+c
C.s=2t2﹣2t+1D.y=x2+
【分析】根据二次函数的定义,可得答案.
【解答】解:A、y=3x﹣1是一次函数,故A不符合题意;
B、y=ax2+bx+c (a≠0)是二次函数,故B不符合题意;
C、s=2t2﹣2t+1是二次函数,故C符合题意;
D、y=x2+不是二次函数,故D不符合题意.
故选:C.
【点评】本题考查了二次函数的定义,y=ax2+bx+c (a≠0)是二次函数,注意二次函数都是用含自变量的整式表示的.
2.已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
A.命题①B.命题②C.命题③D.命题④
【分析】命题④②③可以同时成立,由此即可判断.
【解答】解:假设抛物线的对称轴为直线x=1,
则﹣=1,
解得a=﹣2,
∵函数的图象经过点(3,0),
∴3a+b+9=0,
解得b=﹣3,
故抛物线的解析式为y=x2﹣2x﹣3,
当y=0时,得x2﹣2x﹣3=0,
解得x=3或x=﹣1,
故抛物线与x轴的交点为(﹣1,0)和(3,0),
函数的图象与x轴的交点位于y轴的两侧;
故命题②③④都是正确,①错误,
故选:A.
【点评】本题主要考查二次函数的图象与性质以及对称轴公式的求法.
3.在平面直角坐标系中,直线y=kx+1与抛物线y=x2交于A、B两点,设A(x1,y1),B(x2,y2),则下列结论正确的个数为( )
①x1•x2=﹣4.
②y1+y2=4k2+2.
③当线段AB长取最小值时,则△AOB的面积为2.
④若点N(0,﹣1),则AN⊥BN.
A.1B.2C.3D.4
【分析】由题意,将问题转化成一元二次方程问题去解决即可得解.
【解答】解:由题意,联列方程组
∴可得得x1,x2满足方程x2﹣kx﹣1=0;y1,y2满足方程y2﹣(2+4k2)y+1=0.
依据根与系数的关系得,x1+x2=4k,x1•x2=﹣4,y1+y2=4k2+2,y1•y2=1,
∴①、②正确.
由两点间距离公式得,AB===4(k2+1).
∴当k=0时,AB最小值为4.
∴S△AOB=×1×AB=2.
∴③正确.
由题意,kAN=,kBN=,
∴kAN•kBN=•===﹣k2﹣1.
∴当k=0时,AN⊥BN;当k≠0是,AN与BN不垂直.
∴④错误.
故选:C.
【点评】本题主要考查了二次函数的图象与一次函数图象的交点问题,解题时要能将问题转化成一元二次方程问题解决是关键.
4.已知二次函数y=ax2+bx+c(a≠0)的图象经过三点A(x1,y1),B(x2,y2),C(﹣3,0),且对称轴为直线x=﹣1.有以下结论:①a+b+c=0;②2c+3b=0;③当﹣2<x1<﹣1,0<x2<1时,有y1<y2;④对于任何实数k>0,关于x的方程ax2+bx+c=k(x+1)必有两个不相等的实数根.其中结论正确的有( )
A.1个B.2个C.3个D.4个
【分析】根据二次函数的对称轴为直线x=﹣1和经过点C(﹣3,0),再结合抛物线的对称性即可解决问题.
【解答】解:因为二次函数的图象过点C(﹣3,0),且对称轴为直线x=﹣1,
所以由抛物线的对称性可知,点(1,0)也在抛物线上.
将(1,0)代入二次函数解析式得,
a+b+c=0.
故①正确.
因为抛物线的对称轴是直线x=﹣1,
所以,即b﹣2a=0.
又a+b+c=0,
则将a=﹣b﹣c代入b﹣2a=0得,
2c+3b=0.
故②正确.
因为﹣2<x1<﹣1,0<x2<1,
所以点A离对称轴更近.
则当a>0时,y1<y2;
当a<0时,y1>y2.
故③错误.
由ax2+bx+c=k(x+1)得,
ax2+(b﹣k)x+c﹣k=0.
又a+b+c=0,2c+3b=0,
得.
则(b﹣k)2﹣4a(c﹣k)
=()2﹣4×()(c﹣k)
=.
又k>0,
所以>0.
即该方程有两个不相等的实数根.
故④正确.
故选:C.
【点评】本题考查二次函数的图象与系数的关系及二次函数图象上点的坐标特征,能根据抛物线的对称轴及经过定点得出a,b,c的关系是解题的关键.
5.若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y=(t+1)x2+(t+2)x+s(s,t为常数,t≠﹣1)总有两个不同的倍值点,则s的取值范围是( )
A.s<﹣1B.s<0C.0<s<1D.﹣1<s<0
【分析】将(k,2k)代入二次函数,得(t+1)k2+tk+s=0,是关于k的二次方程.若它总有两个不同的实根,必有Δ=t2﹣4s(t+1)>0.t2﹣4s(t+1)是关于t的一元二次方程,其图象开口向上,若它恒大于0,则与x轴无交点,故有Δ=(4s)2+16s=16s2+16s<0,解此一元二次不等式即可.
【解答】解:将(k,2k)代入二次函数,得2k=(t+1)k2+(t+2)k+s,整理得(t+1)k2+tk+s=0.
∵(t+1)k2+tk+s=0是关于k的一元二次方程,总有两个不同的实根,
∴Δ=t2﹣4s(t+1)>0.
令f(t)=t2﹣4s(t+1)=t2﹣4st﹣4s
∵f(t)>0,
∴Δ=(4s)2+16s=16s2+16s<0,
即Δ=s(s+1)<0,解得0>s>﹣1.
故选:D.
【点评】本题主要考查二次函数图象上点的坐标特征,一定要牢牢掌握并灵活运用.
6.将抛物线y=x2先向右平移3个单位,再向上平移4个单位,得到的抛物线是( )
A.y=(x﹣3)2+4B.y=(x+3)2+4
C.y=(x﹣3)2﹣4D.y=(x+3)2﹣4
【分析】根据“左加右减,上加下减”的法则进行解得即可.
【解答】解:将抛物线y=x2先向右平移3个单位,再向上平移4个单位,得到的抛物线是
y=(x﹣3)2+4.
故选:A.
【点评】本题主要考查了二次函数的图象与几何变换,熟记“左加右减,上加下减”的法则是解决问题的关键.
7.设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则( )
A.当k=2时,函数y的最小值为﹣a
B.当k=2时,函数y的最小值为﹣2a
C.当k=4时,函数y的最小值为﹣a
D.当k=4时,函数y的最小值为﹣2a
【分析】令y=0,求出二次函数与x轴的交点坐标,继而求出二次函数的对称轴,再代入二次函数解析式即可求出顶点的纵坐标,最后代入k的值进行判断即可.
【解答】解:令y=0,则(x﹣m)(x﹣m﹣k)=0,
∴x1=m,x2=m+k,
∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),
∴二次函数的对称轴是:直线,
∵a>0,
∴y有最小值,
当时,y最小,
即,
当k=2时,函数y的最小值为;
当k=4时,函数y的最小值为,
故选:A.
【点评】本题考查了二次函数的最值问题,熟练掌握求二次函数的顶点坐标是解题的关键.
8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )
A.若h=4,则a<0B.若h=5,则a>0
C.若h=6,则a<0D.若h=7,则a>0
【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h的值分别代入即可得出结果.
【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,
∴a(8﹣h)2﹣a(1﹣h)2=7,
整理得:a(9﹣2h)=1,
若h=4,则a=1,故A错误;
若h=5,则a=﹣1,故B错误;
若h=6,则a=﹣,故C正确;
若h=7,则a=﹣,故D错误;
故选:C.
【点评】本题考查了待定系数法、二次函数的性质等知识;熟练掌握待定系数法是解题的关键.
9.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )
A.y=(x﹣4)2+7B.y=(x+4)2+7
C.y=(x﹣4)2﹣25D.y=(x+4)2﹣25
【分析】直接利用配方法进而将原式变形得出答案.
【解答】解:y=x2﹣8x﹣9
=x2﹣8x+16﹣25
=(x﹣4)2﹣25.
故选:C.
【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.
10.下列关于二次函数y=(x﹣2)2﹣3的说法正确的是( )
A.图象是一条开口向下的抛物线
B.图象与x轴没有交点
C.当x<2时,y随x增大而增大
D.图象的顶点坐标是(2,﹣3)
【分析】由二次函数解析式可得抛物线开口方向、对称轴、顶点坐标,与x轴的交点个数,由此解答即可.
【解答】解:A、∵a=1>0,图象的开口向上,故此选项不符合题意;
B、∵y=(x﹣2)2﹣3=x2﹣4x+1,
∴Δ=(﹣4)2﹣4×1×1=12>0,
即图象与x轴有两个交点,
故此选项不符合题意;
C、∵抛物线开口向上,对称轴为直线x=2,
∴当x<2时,y随x增大而减小,
故此选项不符合题意;
D、∵y=(x﹣2)2﹣3,
∴图象的顶点坐标是(2,﹣3),
故此选项符合题意;
故选:D.
【点评】本题考查了二次函数的图象性质,解题的关键是掌握二次函数图象与系数的关系.
二.填空题(共5小题)
11.已知方程ax2+bx+cy=0(a≠0、b、c为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为 y=﹣x2﹣x ,成立的条件是 a≠0,c≠0 ,是 二次 函数.
【分析】函数通常情况下是用x表示y.注意分母不为0,二次项的系数不为0.
【解答】解:整理得函数表达式为y=﹣x2﹣x,成立的条件是a≠0,c≠0,是二次函数.
故答案为:y=﹣x2﹣x;a≠0,c≠0;二次.
【点评】本题考查常用的用一个字母表示出另一字母的函数,注意自变量的取值,及二次项系数的取值.
12.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分.则图中阴影部分的面积是 2 .
【分析】根据图示及抛物线、正方形的性质不难判断出阴影部分的面积即为正方形面积的一半,从而得出答案.
【解答】解:根据图示及抛物线、正方形的性质,
S阴影=S正方形=×2×2=2.
故答案为:2.
【点评】本题主要考查了抛物线及正方形的性质,需要根据图是进行判断,难度适中.
13.已知抛物线y=ax2﹣2ax+b(a>0)经过A(2n+3,y1),B(n﹣1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<y2,则n的取值范围是 ﹣1<n<0 .
【分析】由题意可知:抛物线的对称轴为x=1,开口向上,再分点A在对称轴x=1的左侧,点B在对称轴x=1的右侧和点B在对称轴x=1的左侧,点A在对称轴x=1的右侧两种情况求解即可.
【解答】解:抛物线的对称轴为:x=﹣=1,
∵a>0,
∴抛物线开口向上,
∵y1<y2,
∴若点A在对称轴x=1的左侧,点B在对称轴x=1的右侧,
由题意可得:,
不等式组无解;
若点B在对称轴x=1的左侧,点A在对称轴x=1的右侧,
由题意可得:,
解得:﹣1<n<0,
∴n的取值范围为:﹣1<n<0.
故答案为:﹣1<n<0.
【点评】本题主要考查的是二次函数的性质以及二次函数图象上点的坐标的特征,能根据题意正确列出不等式组是解决本题的关键.
14.抛物线y=ax2+bx+c(a,b,c是常数,c<0)经过(1,1),(m,0),(n,0)三点,且n≥3.下列四个结论:
①b<0;
②4ac﹣b2<4a;
③当n=3时,若点(2,t)在该抛物线上,则t>1;
④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则.
其中正确的是 ②③④ (填写序号).
【分析】①根据图象经过(1,1),c<0,且抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,判断出抛物线的开口向下,即a<0,再把(1,1)代入 y=ax2+bx+c 得a+b+c=1,即可判断①错误;
②先得出抛物线的对称轴在直线x=1.5的右侧,得出抛物线的顶点在点(1,1)的右侧,得出,根据4a<0,利用不等式的性质即可得出4ac﹣b2<4a,即可判断②正确;
③先得出抛物线对称轴在直线 x=1.5 的右侧,得出(1,1)到对称轴的距离大于(2,t)到对称轴的距离,根据a<0,抛物线开口向下,距离抛物线的对称轴越近的函数值越大,即可得出③正确;
④根据方程有两个相等的实数解,得出Δ=(b﹣1)2﹣4ac=0,把(1,1)代入y=ax2+bx+c 得a+b+c=1,即1﹣b=a+c,求出a=c,根据根与系数的关系得出 ,即 ,根据 n≥3,得出 求出m的取值范围,即可判断④正确.
【解答】解:①图象经过(1,1),c<0,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x轴的交点 都在(1,0)的左侧,
∵(n,0)中n≥3,
∴抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,
∴抛物线的开口一定向下,即a<0,
把(1,1)代入y=ax2+bx+c 得:a+b+c=1,
即b=1﹣a﹣c,
∵a<0,c<0,
∴b>0,
故①错误;
②∵a<0,b>0,c<0,,
∴方程ax2+bx+c=0的两个根的积大于0,
即mn>0,
∵n≥3,
∴m>0,
∴,
即抛物线的对称轴在直线x=1.5的右侧,
∴抛物线的顶点在点(1,1)的上方或者右上方,
∴,
∵4a<0,
∴4ac﹣b2<4a,
故②正确;
③∵m>0,
∴当 n=3 时,,
∴抛物线对称轴在直线x=1.5的右侧,
∴(1,1)到对称轴的距离大于(2,t)到对称轴的距离,
∵a<0,抛物线开口向下,
∴距离抛物线越近的函数值越大,
∴t>1,
故③正确;
④方程ax2+bx+c=x可变为ax2+(b﹣1)x+c=0,
∵方程有两个相等的实数解,
∴Δ=(b﹣1)2﹣4ac=0.
∵把(1,1)代入 y=ax2+bx+c 得a+b+c=1,即1﹣b=a+c,
∴(a+c)2﹣4ac=0,
即a2+2ac+c2﹣4ac=0,
∴(a﹣c)2=0,
∴a﹣c=0,
即a=c,
∵(m,0),(n,0)在抛物线上,
∴m,n为方程 ax2+bx+c=0 的两个根,
∴,
∴,
∵n≥3,
∴,
∴.
故④正确.
综上,正确的结论有:②③④.
故答案为:②③④.
【点评】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,待定系数法,数形结合法,抛物线与x轴的交点,二次函数与一元二次方程的联系,一元二次方程的根的判别式,熟练掌握二次函数的性质和二次函数与一元二次方程的联系是解题的关键.
15.已知点A(x1,y1),B(x2,y2)在抛物线y=x2﹣3上,且0<x1<x2,则y1 < y2.(填“<”或“>”或“=”)
【分析】依据题意,求出抛物线y=x2﹣3的对称轴x=0,从而由二次函数的性质,根据抛物线开口向下,故当x>0时y随x的增大而减小,进而判断得解.
【解答】解:由题意得抛物线y=x2﹣3的对称轴x=0,
又a=1>0,
∴抛物线y=x2﹣3开口向上.
∴当x>0时y随x的增大而增大.
∴对于A、B当0<x1<x2时,y1<y2.
故答案为:<.
【点评】本题主要考查了二次函数图象上点的坐标特征,解题时要熟练掌握并理解是关键.
三.解答题(共5小题)
16.在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点,设抛物线的对称轴为x=t.
(1)若对于x1=1,x2=2,有y1=y2,求t的值;
(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.
【分析】(1)根据二次函数的性质求得对称轴即可,
(2)根据题意判断出离对称轴更近的点,从而得出(x1,y1)与(x2,y2)的中点在对称轴的右侧,再根据对称性即可解答.
【解答】解:(1)∵对于x1=1,x2=2,有y1=y2,
∴a+b+c=4a+2b+c,
∴3a+b=0,
∴=﹣3.
∵对称轴为x=﹣=,
∴t=.
(2)∵0<x1<1,1<x2<2,
∴,x1<x2,
∵y1<y2,如果a>0,则(x1,y1)离对称轴更近,x1<x2,则(x1,y1)与(x2,y2)的中点在对称轴的右侧,
∴>t,
即t≤.
【点评】本题考查二次函数的性质,熟练掌握二次函数的对称性是解题关键.
17.已知二次函数y=x2+bx﹣3(b为常数).
(1)该函数图象与x轴交于A、B两点,若点A坐标为(3,0),
①b的值是 ﹣2 ,点B的坐标是 (﹣1,0) ;
②当0<y<5时,借助图象,求自变量x的取值范围;
(2)对于一切实数x,若函数值y>t总成立,求t的取值范围(用含b的式子表示);
(3)当m<y<n时(其中m、n为实数,m<n),自变量x的取值范围是1<x<2,求n与b的值及m的取值范围.
【分析】(1)①依据题意,由二次函数y=x2+bx﹣3过点A(3,0)代入可得b,进而得二次函数解析式,从而可以求出B;
②依据题意,由①令y=0,y=5分别求出对应自变量进而可以得解;
(2)依据题意,由不等式变形得x2+bx﹣3﹣t>0,对于一切实数成立,即对函数y=x2+bx﹣3﹣t与x轴无交点,可得Δ<0,进而可以得解;
(3)依据题意可得抛物线上横坐标为x=1与x=2的两点关于对称轴对称,从而求出b,进而得二次函数解析式,再由自变量x的取值范围是1<x<2,可得n的值,最后可以求出m的范围.
【解答】解:(1)①由二次函数y=x2+bx﹣3过点A(3,0),
∴9+3b﹣3=0.
∴b=﹣2.
∴二次函数为:y=x2﹣2x﹣3.
令y=0,
∴x2﹣2x﹣3=0.
∴解得,x=﹣1或x=3.
∴B(﹣1,0).
故答案为:﹣2;(﹣1,0).
②由题意,令y=x2﹣2x﹣3=5,
∴x=4或x=﹣2.
又∵a=1>0,
∴二次函数图象开口向上.
∴当0<y<5时,满足题意的自变量有两部分,
∴﹣2<x<﹣1或3<x<4.
(2)由题意,∵对于一切实数x,若函数值y>t总成立,
即x2+bx﹣3>t恒成立.
即x2+bx﹣3﹣t>0.
∵y=x2+bx﹣3﹣t开口向上,
∴Δ=b2﹣4(﹣3﹣t)<0.
∴t<﹣.
(3)由题意,抛物线上横坐标为x=1与x=2的两点关于对称轴对称,
∴对称轴x=﹣=.
∴b=﹣3.
∴二次函数为y=x2﹣3x﹣3=(x﹣)2﹣.
∴当x=1或x=2时,y=﹣5,即此时n=﹣5.
由题意,∵m<y<﹣5时,自变量x的取值范围是1<x<2,
∴m<﹣.
【点评】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并理解是关键.
18.已知点(﹣m,0)和(3m,0)在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图象上.
(1)当m=﹣1时,求a和b的值;
(2)若二次函数的图象经过点A(n,3)且点A不在坐标轴上,当﹣2<m<﹣1时,求n的取值范围;
(3)求证:b2+4a=0.
【分析】(1)当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),用待定系数法可得a的值是﹣1,b的值是﹣2;
(2)y=ax2+bx+3图象过点(﹣m,0)和(3m,0),可知抛物线的对称轴为直线x=m,而y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,可得m=,根据﹣2<m<﹣1,即得﹣4<n<﹣2;
(3)由抛物线过(﹣m,0),(3m,0),可得﹣=m,b=﹣2am,把 (﹣m,0),(3m,0)代入y=ax2+bx+3变形可得am2+1=0,故b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.
【解答】(1)解:当m=﹣1时,二次函数y=ax2+bx+3图象过点(1,0)和(﹣3,0),
∴,
∴解得,
∴a的值是﹣1,b的值是﹣2;
(2)解:∵y=ax2+bx+3图象过点(﹣m,0)和(3m,0),
∴抛物线的对称轴为直线x=m,
∵y=ax2+bx+3的图象过点A(n,3),(0,3),且点A不在坐标轴上,
∴由图象的对称性得n=2m,
∴m=,
∵﹣2<m<﹣1,
∴﹣2<<﹣1,
∴﹣4<n<﹣2;
(3)证明:∵抛物线过(﹣m,0),(3m,0),
∴抛物线对称轴为直线x==m,
∴﹣=m,
∴b=﹣2am,
把(﹣m,0),(3m,0)代入y=ax2+bx+3得:
,
①×3+②得:12am2+12=0,
∴am2+1=0,
∴b2+4a=(﹣2am)2+4a=4a(am2+1)=4a×0=0.
【点评】本题考查二次函数图象上点坐标的特征,涉及待定系数法,不等式,方程组等知识,解题的关键是整体思想的应用.
19.在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B,点C不与点B重合.
(1)求点A,B的坐标;
(2)求b,c的值;
(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.
【分析】(1)根据题意,分别将x=0,y=0代入直线 即可求得;
(2)设 ,得到抛物线的顶点式为 ,将B(0,6)代入可求得 ,进而可得到抛物线解析式为 ,即可求得b,c;
(3)根据题意,设P(p,0),,根据平移的性质可得点B,点C向下平移的距离相同,列式求得m=﹣4,,然后得到抛物线N解析式为:,将B(0,6)代入可得 ,即可得到答案.
【解答】解:(1)在 中,令x=0得:y=6,
∴B(0,6),
令y=0得:x=﹣8,
∴A(﹣8,0);
(2)设,设抛物线的解析式为:,
∵抛物线M经过点B,
∴将B(0,6)代入得:,
∵m≠0,
∴,即 ,
将 代入y=a(x﹣m)2+3m+6,
整理得:,
∴,c=6;
(3)如图:
∵CD∥x轴,点P在x轴上,
∴设P(p,0),,
∵点C,B分别平移至点P,D,
∴点B,点C向下平移的距离相同,
∴,
解得:m=﹣4,
由(2)知 ,
∴,
∴抛物线N的函数解析式为:,
将B(0,6)代入可得:,
∴抛物线N的函数解析式为:或 .
【点评】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,涉及平移的性质,二次函数的图象性质等,解题的关键是根据的平移性质求出m和a的值.
20.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求b,c的值.
(2)当﹣4≤x≤0时,求y的最大值.
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;
(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y的最大值即可;
(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.
【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,
得b=﹣6,c=﹣3.
(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,
又∵﹣4≤x≤0,
∴当x=﹣3时,y有最大值为6.
(3)①当﹣3<m≤0时,
当x=0时,y有最小值为﹣3,
当x=m时,y有最大值为﹣m2﹣6m﹣3,
∴﹣m2﹣6m﹣3+(﹣3)=2,
∴m=﹣2或m=﹣4(舍去).
②当m≤﹣3时,
当x=﹣3时y有最大值为6,
∵y的最大值与最小值之和为2,
∴y最小值为﹣4,
∴﹣(m+3)2+6=﹣4,
∴m=或m=(舍去).
综上所述,m=﹣2或.
【点评】此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m的取值范围是解题关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2024/6/15 14:47:20;用户:梅袁;邮箱:18974992663;学号:43534571
相关试卷
这是一份初中数学人教版(2024)九年级上册21.1 一元二次方程单元测试当堂检测题,共16页。试卷主要包含了若代数式x2﹣4x+a可化为等内容,欢迎下载使用。
这是一份人教版(2024)九年级上册22.1.1 二次函数课时练习,共21页。试卷主要包含了把x2﹣4x+1化成等内容,欢迎下载使用。
这是一份【专项练习】全套专题数学2023-2024二八下明德期中数学试卷(知识梳理+含答案),文件包含答案-8-2023-2024-2明德八下期中pdf、8-2023-2024-2明德八下期中pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。