2024-2025学年宁夏回族自治区银川六中数学九年级第一学期开学教学质量检测试题【含答案】
展开这是一份2024-2025学年宁夏回族自治区银川六中数学九年级第一学期开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)估计的值在( )
A.2到3之间B.3到4之间C.4到5之间D.5到6之间
2、(4分)某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是( )
A.27B.28C.29D.30
3、(4分)如图,过对角线的交点,交于,交于,若的周长为36,,则四边形的周长为( )
A.24B.26C.28D.20
4、(4分)下列二次根式中,最简二次根式的是( )
A.B.C.D.
5、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2018的坐标是( )
A.(﹣2018,0)B.(21009,0)
C.(21008,﹣21008)D.(0,21009)
6、(4分)下列分式是最简分式的是( ).
A.B.C.D.
7、(4分)已知,则化简的结果是( )
A.B.C.﹣3D.3
8、(4分)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )
A.24mB.22mC.20mD.18m
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.
10、(4分)若是方程的两个实数根,则_______.
11、(4分)命题“如a2>b2,则a>b”的逆命题是 ■ 命题(填“真”或“假”).
12、(4分)如果a是一元二次方程的一个根,那么代数式=__________.
13、(4分)将直线y=2x-3向上平移5个单位可得______直线.
三、解答题(本大题共5个小题,共48分)
14、(12分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:
(1)小帅的骑车速度为 千米/小时;点C的坐标为 ;
(2)求线段AB对应的函数表达式;
(3)当小帅到达乙地时,小泽距乙地还有多远?
15、(8分)在△ABC中,AB=AC=10,D为BC边上的中点,BD=6,连接AD.
(1)尺规作图:作AC边的中垂线交AD于点P;(保留作图痕迹,不要求写作法和证明)
(2)连接CP,求△DPC的周长.
16、(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
17、(10分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:
(1)该班共有多少名学生参加这次测验?
(2)求1.5~2.5这一分数段的频数是多少,频率是多少?
(3)若80分以上为优秀,则该班的优秀率是多少?
18、(10分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
20、(4分)若方程+2=的解是正数,则m的取值范围是___.
21、(4分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC= .
22、(4分)在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.
23、(4分)一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读材料:小华像这样解分式方程
解:移项,得:
通分,得:
整理,得:分子值取0,得:x+5=0
即:x=﹣5
经检验:x=﹣5是原分式方程的解.
(1)小华这种解分式方程的新方法,主要依据是 ;
(2)试用小华的方法解分式方程
25、(10分)蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.
(1)求图中校车从第二个站点出发时点B的坐标;
(2)求蒙蒙到达学校站点时的时间;
(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.
26、(12分)如图,中,平分,的垂直平分线分别交、、于点、、,连接、.
(1)求证:四边形是菱形;
(2)若,,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用”夹逼法“得出的范围,继而也可得出+1的范围.
【详解】
∵4 < 6 < 9 ,
∴,即,
∴,
故选B.
2、B
【解析】
分析:根据出现次数最多的数是众数解答.
详解:27出现1次;1出现3次;29出现2次;30出现2次;
所以,众数是1.
故选B.
点睛:本题考查了众数的定义,熟记出现次数最多的是众数是解题的关键.
3、A
【解析】
根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE=CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.
【详解】
在平行四边形ABCD中,
2(AB+BC)=36,
∴AB+BC=18,
∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC
∴∠AEF=∠CFE,
在△AOE和△COF中
∴△AOE≌△COF,
∴AE=CF,OE=OF=3,
∴EF=6
∴AB+BF+FE+EA
=AB+BF+CF+EF
=AB+BC+EF
=18+6
=24
故选:A.
本题考查平行四边形的性质,解题的关键是熟练运用平行四边形的性质,本题属于中等题型.
4、D
【解析】
分析:根据最简二次根式的概念逐项分析即可.
详解: A. =2 , 故不是最简二次根式;
B. =, 故不是最简二次根式;
C.当a≥0时, , 故不是最简二次根式;
D. 的被开方式既不含分母,又不含能开的尽的因式,故是最简二次根式;
故选D.
点睛:本题考查了二次根式的识别,如果二次根式的被开放式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.
5、B
【解析】
根据正方形的性质找出点A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、…的坐标,根据坐标的变化可找出变化规律“A8n+2(24n+1,0)(n为自然数)”,依此规律即可求出点A2018的坐标(根据点的排布找出第8n+2个点在x轴正半轴,利用排除法亦可确定答案).
【详解】
解:∵A1(1,1),A2(2,0),A3(2,﹣2),A4(0,﹣4),A5(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),A9(16,16),A10(32,0),…,
∴A8n+2(24n+1,0)(n为自然数).
∵2018=252×8+2,
∴点A2018的坐标为(21009,0).
故选:B.
本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律“A8n+2(24n+1,0)(n为自然数)”是解题的关键.
6、C
【解析】
A选项中,因为,所以本选项错误;
B选项中,因为,所以本选项错误;
C选项中,因为的分子与分母没有1之外的公因式,所以本选项正确;
D选项中,因为,所以本选项错误;
故选C.
7、D
【解析】
先把变形为+,根据a的取值范围可确定1-a和a-4的符号,然后根据二次根式的性质即可得答案.
【详解】
=+
∵2∴1-a<0,a-4<0,
∴+=-(1-a)-(a-4)=-1+a-a+4=3,
故选D.
本题考查了二次根式的化简,当a≥0时,=a;当a<0时,=-a;熟练掌握二次根式的性质是解题关键.
8、A
【解析】
过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.
【详解】
解:过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.
由题意得:.
∴DF=DE×1.6÷2=14.4(m).
∴GF=BD=CD=6m.
又∵.
∴AG=1.6×6=9.6(m).
∴AB=14.4+9.6=24(m).
答:铁塔的高度为24m.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.
【详解】
解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,
所以朝上一面的点数不小于3的概率是=,
故答案为:.
此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.
10、10
【解析】
试题分析:根据韦达定理可得:a+b=2,ab=-3,则=4-2×(-3)=10.
考点:韦达定理的应用
11、假
【解析】
先写出命题的逆命题,然后在判断逆命题的真假.
解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,
假设a=1,b=-2,此时a>b,但a2<b2,即此命题为假命题.
故答案为假.
12、1
【解析】
根据一元二次方程的解的定义得到a2-1a=5,再把8-a2+1a变形为8-(a2-1a),然后利用整体代入的方法计算即可.
【详解】
解:把x=a代入x2-1x-5=0得a2-1a-5=0,
所以a2-1a=5,
所以8-a2+1a=8-(a2-1a)=8-5=1.
故答案为:1.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
13、y=1x+1
【解析】
根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.
【详解】
解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,
那么新直线的k=1,b=-3+5=1.
∴新直线的解析式为y=1x+1.
故答案是:y=1x+1.
此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)16,C(0.5,0);(2);(3)4千米.
【解析】
(1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;
(2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;
(3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.
【详解】
(1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,
点C的横坐标为:1-8÷16=0.5,
∴点C的坐标为(0.5,0),
故答案为千米/小时;(0.5,0);
(2)设线段对应的函数表达式为,
∵,,
∴,
解得:,
∴线段对应的函数表达式为;
(3)当时,,
∴24-20=4,
答:当小帅到达乙地时,小泽距乙地还有4千米.
本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.
15、(1)见解析;(2)1
【解析】
(1)利用基本作图作AC的垂直平分线得到点P;
(2)根据线段垂直平分线的性质得到PA=PC,则利用等线段代换得到△DPC的周长=DA+DC,再根据等腰三角形的性质得到AD⊥BC,利用勾股定理计算出AD=8,从而可计算出△DPC的周长.
【详解】
解:(1)如图,点D为所作;
(2)∵AC边的中垂线交AD于点P,
∴PA=PC,
∴△DPC的周长=DP+DC+PC=DP+PA+DC=DA+DC,
∵AB=AC=10,D为BC边上的中点,
∴AD⊥BC,CD=BD=6,
∴AD==8,
∴△DPC的周长=8+6=1.
本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.
16、(1)证明见解析;(2)
【解析】
(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;
(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.
【详解】
(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;
(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.
考点:三角形的中位线定理,勾股定理.
17、(1)50;(2)频数:10 频率:0.2;(3)优秀率:36%
【解析】
(1)将统计图中的数据进行求和计算可得答案;
(2)由图可得频数,根据频率等于频数除以总数进行计算可得答案;
(3)根据直方图可得80分以上的优秀人数,再进一步计算百分比.
【详解】
解:(1)根据题意,该班参加测验的学生人数为4+10+18+12+6=50(人),
答:该班共有50名学生参加这次测验;
(2)由图可得:1.5~2.5这一分数段的频数为10,频率为10÷50=0.2;
(3)由图可得:该班的优秀人数为12+6=18人,
则该班的优秀率为:18÷50×100%=36%,
答:该班的优秀率是36%.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
18、,.
【解析】
先对进行化简,再选择-1,0,1代入计算即可.
【详解】
原式
因为且
所以当时,原式
当时,原式
考查了整式的化简求值,解题关键是熟记分式的运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
【详解】
解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.
故答案为.
此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
20、m<3且m≠2.
【解析】
分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.
【详解】
去分母得:m+2(x﹣1)=x+1,
解得:x=3﹣m,
由分式方程的解为正数,得到3﹣m>0,且3﹣m≠1,
解得:m<3且m≠2,
故答案为:m<3且m≠2.
此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
21、1+
【解析】
分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.
详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=,
∵∠C=90°,
∴CD===1,
∴BC=+1.
故答案为.
点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
22、1
【解析】
先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.
【详解】
由题意可得抛物线:y=(x−2),
对称轴是:直线x=2,由对称性得:A(4,0),
沿x轴折叠后所得抛物线为:y=−(x−2);
如图,由题意得:
当y=1时, (x−2)=1,
解得:x=2+ ,x =2−,
∴C(2−,1),F(2+,1),
当y=1时,−(x−2)=1,
解得:x=3,x=1,
∴D(1,1),E(3,1),
由图象得:图象G在直线l上方的部分,当1
故答案为1
此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.
23、1
【解析】
根据23,32,18,x,12,它的中位数是20,可求出x的值,再根据平均数的计算方法计算得出结果即可.
【详解】
解:∵23,32,18,x,12,它的中位数是20,
∴x=20,
平均数为:(23+32+18+20+12)÷5=1,
故答案为:1.
本题考查中位数、平均数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
二、解答题(本大题共3个小题,共30分)
24、(1)分式的值为1即分子为1且分母不为1.(2)分式方程无解.
【解析】
(1)根据分式的值为1即分子为1且分母不为1可得;
(2)移项后,通分、根据分式的加减法则计算左边,再由(1)中结论得出关于x的方程,解之求得x的值,最后检验即可得.
【详解】
解:(1)小华这种解分式方程的新方法,主要依据是分式的值为1即分子为1且分母不为1,
故答案为:分式的值为1即分子为1且分母不为1.
(2),
,
,
则﹣4(x+2)=1,
解得:x=﹣2,
检验:x=﹣2时,分母为1,分式无意义,
所以x=﹣2是增根,原分式方程无解.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
25、(1)(14,1);(2)7点12分;(3)8分钟追上,路程3千米;
【解析】
(1)首先求出校车的速度,因为校车在每个站点之间行驶速度相同,得出点A的坐标,进而求出点B的坐标;
(2)由速度和B点坐标,求出BC的表达式,得知C点纵坐标为9,则横坐标为22,即蒙蒙到学校用了22分;
(3)贝贝比蒙蒙乘坐的校车早2分钟到学校站点,则贝贝到学校用了20分,即E(20,9)
又F(8,0),求出EF的表达式,贝贝乘坐出租车出发后追上蒙蒙乘坐的校车,即BC和EF的交点G(16,6),即可得知贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程是3千米.
【详解】
解:(1)校车的速度为3÷6=0.1(千米/分钟),
点A的纵坐标的值为3+0.1×(12-8)=1.
故点B的坐标(14,1).
(2)由(1)中得知,B(14,1),
设BC的表达式为,
将B代入,得
C点纵坐标为9,则横坐标为22,即蒙蒙到学校用了22分,
蒙蒙出发的时间为7:30,所以蒙蒙到达学校站点时的时间为7点12分.
(3)贝贝比蒙蒙乘坐的校车早2分钟到学校站点,则贝贝到学校用了20分,即E(20,9)
又F(8,0),设EF表达式为,
解得
贝贝乘坐出租车出发后追上蒙蒙乘坐的校车,即BC和EF的交点G,
解得
即G(16,6)
故贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程是3千米.
(1)此题主要考查一次函数的实际应用,校车的速度即为直线的斜率,校车在每个站点之间行驶速度相同,即可得解;
(2)已知点坐标求一次函数解析式,直接代入即可得解,得出坐标要联系实际应用回答;
(3)将两个一次函数解析式联合得解,再联系实际应用.
26、(1)详见解析;(2)
【解析】
(1)根据平分,得到,再根据垂直平分,得到,,从而得到,故,,从而证明四边形是平行四边形,再根据证明四边形是菱形;
(2)过点作,由(1)知,,得到,且,得到,由,得到,故由进行求解.
【详解】
解:(1)证明:∵平分,∴,
∵垂直平分,∴,,
∴,,
∴,
∴,,
∴四边形是平行四边形,
又∵,
∴四边形是菱形;
(2)如图,过点作,
由(1)知∴,,
∴,且,
∴,,
∵,,
∴,
∴,
∴.
此题主要考查菱形的判定与性质,解题的关键是熟知菱形的判定定理、含30°的直角三角形的性质及等腰直角三角形的性质.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年梅州市重点中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江西省上饶市第六中学数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。