宁夏银川十五中2024-2025学年数学九上开学达标检测模拟试题【含答案】
展开这是一份宁夏银川十五中2024-2025学年数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列条件中能构成直角三角形的是( ).
A.2、3、4B.3、4、5C.4、5、6D.5、6、7
2、(4分)某校八年级学生去距学校10km的科技馆参观,一部分学生骑自行车,过了30min,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的4倍,设骑自行车学生的速度为xkm/h,则下列方程正确的是( )
A.B.C.D.
3、(4分)一次函数与,在同一平面直角坐标系中的图象是( )
A.B.C.D.
4、(4分)下列命题中,是假命题的是( )
A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形
C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形
D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形
5、(4分)据《南昌晚报》2019 年 4 月 28 日报道,“五一”期间南昌天气预报气温如下:
则“五一”期间南昌天气预报气温日温差最大的时间是( )
A.4 月 29 日B.4 月 30 日C.5 月 1 日D.5 月 3 日
6、(4分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是( )
A.B.C.D.
7、(4分)从、、、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程有解,且使关于x的一次函数不经过第四象限.那么这六个数中,所有满足条件的k的个数是( )
A.4B.3C.2D.1
8、(4分)某商场要招聘电脑收银员,应聘者需通过计算机、语言和商品知识三项测试,小明的三项成绩(百分制)依次是70分,50分,80分,其中计算算机成绩占50%,语言成绩占30%,商品知识成绩占20%.则小明的最终成绩是( )
A.66分B.68分C.70分D.80分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.
10、(4分)如图,数轴上点O对应的数是0,点A对应的数是3,AB⊥OA,垂足为A,且AB=2,以原点O为圆心,以OB为半径画弧,弧与数轴的交点为点C,则点C表示的数为_____.
11、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,如果 AD=4,BC=8 ,∠B =60° ,那么这个等腰梯形的腰 AB 的长等于____.
12、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.
(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.
(2)如图2,若直线l经过点B(1,0), 双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.
13、(4分)如图,在矩形中,,,是边的中点,点是边上的一动点,将沿折叠,使得点落在处,连接,,当点落在矩形的对称轴上,则的值为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.
15、(8分)解不等式组:,并将解集在数轴上表示出来.
16、(8分)如图,平面直角坐标系中,反比例函数y1=的图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
17、(10分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.
(1)如图1,若k=1,求线段AB的长;
(2)如图2,点C与点A关于y轴对称,作射线BC;
①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;
② y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围
18、(10分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作,由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间:
(1)求甲乙两名工人每天各制作多少个宣传牌?
(2)现在需要这两名工人合作完成44个宣传牌制作在务,应如何分配,才能让两名工人同时完成任务?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果点A1(1,1),那么点A2019的纵坐标是_____.
20、(4分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是________.
21、(4分)如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.
22、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.
23、(4分)如图是某超市一层到二层电梯的示意图,其中AB、CD分别表示超市一层、二层电梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘电梯从点B到点C上升的高度h约为________米.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数与反比例函数的图象交于点和,与y轴交于点C.
(1)= ,= ;
(2)根据函数图象可知,当>时,x的取值范围是 ;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当:=3:1时,求点P的坐标.
25、(10分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:
结合以上信息,回答下列问题:
(1)求服装项目在选手考评中的权数;
(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.
26、(12分)如图,在矩形ABCD中,对角线AC、BD相交于点O.若∠AOD=120°,AB=3,求AC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理逆定理进行计算判断即可.
【详解】
A.,故不能构成直角三角形;
B.,故能构成直角三角形;
C.,故不能构成直角三角形;
D.,故不能构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.
2、A
【解析】
汽车的速度是4xkm/h, 骑自行车所需要的时间=乘汽车的时间+30min,故选A.
3、C
【解析】
根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.
【详解】
当ab>0,a,b同号,y=abx经过一、三象限,
同正时,y=ax+b过一、三、二象限;
同负时过二、四、三象限,
当ab<0时,a,b异号,y=abx经过二、四象限
a<0,b>0时,y=ax+b过一、三、四象限;
a>0,b<0时,y=ax+b过一、二、四象限.
故选C.
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
4、C
【解析】
一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.
【详解】
A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;
B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;
C. △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;
D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;
故选C.
本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.
5、C
【解析】
根据极差的公式:极差=最大值-最小值.找出所求数据中最大的值,最小值,再代入公式求值即可.
【详解】
4 月 29 日的温差:22-18=4
4 月 30 日的温差:24-18=6
5 月 1 日的温差:27-19=8
5 月 2 日的温差:22-18=4
5 月 3 日的温差:24-19=5
故5月1日温差最大,为8
故选:C
本题考查了极差,掌握极差公式: 极差=最大值-最小值是解题的关键.
6、D
【解析】
通过点经过四边形各个顶点,观察图象的对称趋势问题可解.
【详解】
、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.
故选:.
本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.
7、C
【解析】
根据题意可以求得k的值,从而可以解答本题.
【详解】
解:∵关于x的一次函数y=(k+2)x+1不经过第四象限,
∴k+2>0,解得:k>,
∵关于x的分式方程:有解,
∴当k=-1时,分式方程=k-2的解是,
当k=1时,分式方程=k-2无解,
当k=2时,分式方程=k-2无解,
当k=3时,分式方程=k-2的解是x=1,
∴符合要求的k的值为-1和3,
∴所有满足条件的k的个数是2个,
故选:C.
本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出相应的k的值.
8、A
【解析】
根据加权平均数的定义列式计算可得.
【详解】
解:小明最终的成绩是70×50%+50×30%+80×20%=66(分),
故选:A.
本题考查了加权平均数的计算,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权). 数据的权能反映数据的相对“重要程度”,对于同样的一组数据,若权重不同,则加权平均数很可能是不同的.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、14cm或16cm
【解析】
试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.
解:如图,∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当AB=BE=2cm,CE=3cm时,
则周长为14cm;
②当AB=BE=3cm时,CE=2cm,
则周长为16cm.
故答案为14cm或16cm.
考点:平行四边形的性质.
10、
【解析】
首先利用勾股定理计算出OB的长,然后再由题意可得BO=CO,进而可得CO的长.
【详解】
∵数轴上点A对应的数为3,
∴AO=3,
∵AB⊥OA于A,且AB=2,
∴BO===,
∵以原点O为圆心,OB为半径画弧,交数轴于点C,
∴OC的长为,
故答案为:.
此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO的长.
11、4
【解析】
过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.
【详解】
借钱:过作AE∥DC,交BC于E,
在等腰梯形ABCD中,AD∥BC,
∴四边形AECD是平行四边形
∴AB=AE,CE=AD=4
∵∠B=60°,AB=AE,
∴△ABE是等边三角形,
∴AB=BE
∵BE=BC-EC=8-4=4
∴AB=4.
故答案为:4
本题考查平行四边形的性质和等边三角形的判定与性质.
12、F(4,0)
【解析】
(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;
【详解】
解:(1)如图:
当y=0时,±,
解得:x1=2,x2=-2(舍去),
∴点A的坐标为(2,0).
∵点B的坐标为(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F点的坐标为(4,0).
故答案为:(4,0).
(2)设点P的坐标为(x,),则点H的坐标为(1,).
∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
∴点Q的坐标为(x+,).
∵点H的坐标为(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化简得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴点P的坐标为(,).
故答案为:(,).
本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;
13、2
【解析】
根据旋转的性质在三角形EHG中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.
【详解】
解:如下图过点E作EH垂直对称轴与H,连接BG,
∵,,
∴BE=EG=1,EH=,
∴∠EGH=30°,
∴∠BEG=30°,
由旋转可知∠BEF=15°,BG⊥EF,
∴∠EBG=75°,∠GBF=∠BCG=15°,即
∴m=2
故答案是:2
本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
根据角平分线的画法和性质解答即可.
【详解】
证明:由题意可得:BD是∠ABC的角平分线,
∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,
∴∠ABC=60°,∠A=30°,
∴∠CBD=∠DBA=30°,
∴BD=2CD,
∵∠DBA=∠A=30°,
∴AD=BD,
∴AD=2CD.
本题考查了基本作图,关键是根据角平分线的画法和性质证明.
15、-7<≤1.数轴见解析.
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
解:
解不等式①,得≤1
解不等式②,得>-7
∴不等式组的解集为-7<≤1.
在数轴上表示不等式组的解集为
故答案为-7<≤1.
本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.
16、(1)反比例函数的解析式为y=;(1)﹣1<x<0或x>1.
.
【解析】
(1)利用待定系数法即可解决问题;
(1)根据对称性确定点C坐标,观察图象,y1的图象在y1的图象上方的自变量的取值,即为所求.
【详解】
(1)∵反比例函数y1=经过点A(1,1),
∴k=1,
∴反比例函数的解析式为y=;
(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),
观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.
本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.
17、 (1) ;(2) ;(3)四边形ABCD为菱形,-2≤k≤2且k≠1.
【解析】
(1)将k=1代入解析式中求出解析式,再令x=1,求出B点坐标进而求出OB的长,再在Rt△AOB中使用勾股定理即可求解;
(2)①当k=3时,求出AB的解析式,进而求出点A的坐标,再根据对称性求出C点坐标,进而求出BC的解析式,再写出自变量的取值范围即可;
②先证明OB=OD,OA=OC,且AC⊥BD,即可证明四边形ABCD为菱形,进而求出其面积.
【详解】
解:(1)由题意知,将k=1代入y=kx-3,
即直线AB的解析式为:y=x-3,
令x=1,求出B点坐标为(1,-3),故OB=3,
令y=1,求出A点坐标为(3,1),故OA=3,
在Rt△AOB中,由勾股定理有:,
故答案为:;
(2)①当k=3时,直线AB的解析式为:y=3x-3,
令y=1,则x=1,求出点A的坐标为(1,1),
令x=1,则y=-3,求出点B的坐标为(1,-3),
∵点C与点A关于y轴对称,故点C(-1,1),
设直线BC的解析式为:,代入B、C两点坐标:
,解得,故直线BC的解析式为:,
∴以射线BA和射线BC所组成的图形为函数图像的函数解析式为:,
故答案为:;
②四边形ABCD为菱形,理由如下:
∵点B(1,-3),点D(1,3),故OB=OD,
∵点C与点A关于y轴对称,
∴OA=OC,
由对角线互相平分的四边形是平行四边形知,四边形ABCD为平行四边形,
又∵AC⊥BD,
故四边形ABCD为菱形;
令y=kx-3中y=1,解得,∴A(,1),则点C(,1),
则AC=,
∴菱形ABCD的面积为,
解得:且,
故答案为:且.
本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、面积的计算等,综合性强,难度适中,熟练掌握一次函数的图像和性质及菱形的性质和判定是解决本题的关键.
18、 (1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.
【解析】
(1)设甲工人每天完成x个宣传牌,则乙工人每天完成1.2x个宣传牌,根据完成30个宣传牌工作,乙工人比甲工人节省了一天时间列出方程解答即可;
(2)根据(1)中求得的数据,设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,根据所用时间相等列出方程解答即可.
【详解】
解:(1)设甲工人每天制作x个宣传牌,则乙工人每天制(1+20%)x=1.2x个,由题意得
解得x=5
经检验x=5是原方程的解且符合题意
∴1.2x=6
答:甲工人每天制作5个宣传牌,乙工人每天制作6个.
(2) 设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,
由题意得: ,
解得:a=20,
44-a=24,
答:给甲分配制作20个,乙制作24个 ,才能让两名工人同时完成任务.
故答案为:(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.
本题考查分式方程的实际运用、一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设点A2,A3,A4…,A1坐标,结合函数解析式,寻找纵坐标规律,进而解题.
【详解】
∵A1(1,1)在直线y=x+b,
∴b=,
∴y=x+,
设A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A1(x1,y1)
则有 y2=x2+,
y3=x3+,
…
y1=x1+.
又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
…
x1=2y1+2y2+2y3+…+2y2+y1.
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
y4= y3
…
y1=y2
又∵y1=1
∴y2= y3=()2
y4=()3
…
y1=()2
故答案为()2.
此题主要考查了 一次函数点坐标特点;等腰直角三角形斜边上高等于斜边长一半;找规律.
20、
【解析】
绿球的个数除以球的总数即为所求的概率.
【详解】
解:∵一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,
∴小明摸出一个球是绿球的概率是:.
故答案为:
此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
21、60°
【解析】
分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.
详解:∵MN是AE的垂直平分线,
∴CA=CE,
∴∠CAE=∠E,
∴∠ACB=2∠E,
∵AB=AC,
∴∠B=∠ACB=2∠E=60°,
故答案为:60°
点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
22、上 1
【解析】
根据“上加下减”的平移规律解答即可.
【详解】
解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,
即y=3x,该函数图象经过原点.
故答案为上,1.
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.
23、1
【解析】
过点C作CE⊥AB,交AB的延长线于E,
∵∠ABC=150°,
∴∠CBE=30°,
在Rt△BCE中,∵BC=12,∠CBE=30°,
∴CE=BC=1.
故答案是1.
点睛:本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.
二、解答题(本大题共3个小题,共30分)
24、(1),16; (2)-8<x<0或x>4; (3)点P的坐标为().
【解析】
(1)将点B代入y1=k1x+2和y2=,可求出k1=k2=16.
(2)由图象知,-8<x<0和x>4
(3)先求出四边形ODAC的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.
【详解】
解:(1)把B(-8,-2)代入y1=k1x+2得-8k1+2=-2,解得k1=
∴一次函数解析式为y1=x+2;
把B(-8,-2)代入得k2=-8×(-2)=16,
∴反比例函数解析式为
故答案为:,16;
(2)∵当y1>y2时即直线在反比例函数图象的上方时对应的x的取值范围,
∴-8<x<0或x>4;
故答案为:-8<x<0或x>4;
(3)由(1)知y1=x+2,y2=,
∴m=4,点C的坐标是(0,2),点A的坐标是(4,4),
∴CO=2,AD=OD=4,
∴S梯形ODAC=·OD=×4=12.
∵S梯形ODAC∶S△ODE=3∶1,
∴S△ODE=×S梯形ODAC=×12=4,
即OD·DE=4,∴DE=2,
∴点E的坐标为(4,2).
又∵点E在直线OP上,
∴直线OP的解析式是y=x,
∴直线OP与反比例函数y2=的图象在第一象限内的交点P的坐标为(4,2).
本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数与一次函数的解析式,三角形、梯形的面积,根据图象找出自变量的取值范围.在解题时要综合应用反比例函数的图象和性质以及求一次函数与反比例函数交点坐标是本题的关键.
25、(1)服装在考评中的权数为10%;(2)选择李明参加比赛,理由是李明的总成绩高.
【解析】
(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.
【详解】
(1)服装在考评中的权数为:1-20%-30%-40%=10%,
答:服装在考评中的权数为10%.
(2)选择李明参加比赛,
李明的总成绩为:85×10%+70×20%+80×30%+85×40%=80.5分,
张华的成绩为:90×10%+75×20%+75×30%+80×40%=78.5分,
因为80.5>78.5,
所以李明成绩较好,选择李明成绩比赛.
答:选择李明参加比赛,理由是李明的总成绩高.
考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.
26、1
【解析】
依据矩形的性质可知△AOB是等边三角形,所以AO=AB=3,则AC=2AO=1.
【详解】
解:∵在矩形ABCD中,
∴AO=BO=CO=DO.
∵∠AOD=120°,
∴∠AOB=10°.
∴△AOB是等边三角形.
∴AO=AB=3,
∴AC=2AO=1.
本题主要考查了矩形的性质,矩形中对角线相等且互相平分,则其分成的四条线段都相等.
题号
一
二
三
四
五
总分
得分
批阅人
时间
4 月 29 日
4 月 30 日
5 月 1 日
5 月 2 日
5 月 3 日
最低气温
18℃
18℃
19℃
18℃
19℃
最高气温
22℃
24℃
27℃
22℃
24℃
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
相关试卷
这是一份宁夏省银川市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省许昌地区2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省古浪县2024-2025学年九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。