![宁夏回族自治区银川五中2025届数学九年级第一学期开学监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16287812/0-1729809954425/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![宁夏回族自治区银川五中2025届数学九年级第一学期开学监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16287812/0-1729809954468/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![宁夏回族自治区银川五中2025届数学九年级第一学期开学监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16287812/0-1729809954485/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
宁夏回族自治区银川五中2025届数学九年级第一学期开学监测试题【含答案】
展开
这是一份宁夏回族自治区银川五中2025届数学九年级第一学期开学监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列角度不可能是多边形内角和的是( )
A.180°B.270°C.360°D.900°
2、(4分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )
A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0
3、(4分)如图,的周长为,,和相交于点,交于点,则的周长是( )
A.B.C.D.
4、(4分)下列式子中,属于最简二次根式的是( )
A.B.C.D.
5、(4分)在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位,得到△A1B1C1,把这两步操作规定为翻移变换,如图,已知等边三角形ABC的顶点B,C的坐标分别是(1,1),(3,1).把△ABC经过连续3次翻移变换得到△A3B3C3,则点A的对应点A3的坐标是( )
A.(5,﹣)B.(8,1+)C.(11,﹣1﹣)D.(14,1+)
6、(4分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )
A.0.1B.0.15
C.0.25D.0.3
7、(4分)下列条件,不能判断四边形是平行四边形的是( )
A.,B.,
C.,D.,
8、(4分)若关于x的一元一次不等式组有解,则m的取值范围为
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
10、(4分)外角和与内角和相等的平面多边形是_______________.
11、(4分)函数的自变量的取值范围是.
12、(4分)已知是一次函数,则__________.
13、(4分)若正比例函数y=kx的图象经过点(2,4),则k=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
15、(8分)如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.
(1)求A,B两点的坐标;
(2)求△BOC的面积;
(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.
①当OA=3MN时,求t的值;
②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.
16、(8分)如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.
17、(10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
18、(10分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC=4,求菱形的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据4,,6,9,12的众数为6,则这组数据的中位数为_________.
20、(4分)已知一次函数,那么__________
21、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
22、(4分)使式子的值为0,则a的值为_______.
23、(4分)使有意义的x取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
25、(10分)第二届全国青年运动会将于2019年8月在太原开幕,这是山西历史上第一次举办全国大型综合性运动会,必将推动我市全民健康理念的提高.某体育用品商店近期购进甲、乙两种运动衫各50件,甲种用了2000元,乙种用了2400元.商店将甲种运动衫的销售单价定为60元,乙种运动衫的销售单价定为88元.该店销售一段时间后发现,甲种运动衫的销售不理想,于是将余下的运动衫按照七折销售;而乙种运动衫的销售价格不变.商店售完这两种运动衫至少可获利2460元,求甲种运动衫按原价销售件数的最小值.
26、(12分)如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.
(1)求四边形CEFB的面积;
(2)试判断AF与BE的位置关系,并说明理由;
(3)若∠BEC=15°,求AC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据多边形的内角和公式即可求解.
【详解】
解:A、180°÷180°=1,是180°的倍数,故可能是多边形的内角和;
B、270°÷180°=1…90°,不是180°的倍数,故不可能是多边形的内角和;
C、360°÷180°=2,是180°的倍数,故可能是多边形的内角和;
D、900÷180=5,是180°的倍数,故可能是多边形的内角和.
故选:B.
此题主要考查多边形的内角,解题的关键是熟知多边形的内角和公式.
2、C
【解析】
解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,,故C正确,a+b不一定大于0,故D错误.故选C.
3、B
【解析】
根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥BD可说明E0是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE-DE,再利用平行四边形ABCD的周长为16cm可得AB+AD=8cm,进而可得△ABE的周长.
【详解】
解:∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,OB=OD
又∵OE⊥BD
∴OE是线段BD的中垂线,
∴BE=DE
∴AE+ED-AE+BE,
∵平行四边形ABCD的周长为16cm
∴AB+AD=8cm
∴△ABE的周长=AB+AD=AB+AE+BE=8cm.
故选:B.
本题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等,平行四边形的对角线互相平分.
4、D
【解析】
直接利用最简二次根式的定义分析得出答案.
【详解】
解:、,故此选项错误;
、,故此选项错误;
、,故此选项错误;
、是最简二次根式,故此选项正确.
故选:.
此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.
5、C
【解析】
首先把△ABC先沿x轴翻折,再向右平移3个单位得到△A BC得到点A 的坐标为(2+3,-1-),同样得出A 的坐标为(2+3+3,1+),…由此得出A 的坐标为(2+3x5,-1-),进一步选择答案即可
【详解】
∵把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1得到点A1的坐标为(2+3,﹣1﹣),
同样得出A2的坐标为(2+3+3,1+),
…
A3的坐标为(2+3×3,﹣1﹣),即(11,﹣1﹣).
故选:C.
此题考查坐标与图形变化-对称,坐标与图形变化平移和规律型:点的坐标,解题关键在于找到规律
6、D
【解析】
∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.
7、D
【解析】
根据平行四边形的判定方法一一判断即可.
【详解】
解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;
B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;
C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;
D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;
故选:D.
本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.
8、C
【解析】
求出两个不等式的解集,再根据有解列出不等式组求解即可:
【详解】
解,
∵不等式组有解,∴2m>2﹣m.
∴ .故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、50°或90°
【解析】
分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.
详解:当AP⊥ON时,∠APO=90°,则∠A=50°,
当PA⊥OA时,∠A=90°,
即当△AOP为直角三角形时,∠A=50或90°.
故答案为50°或90°.
点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.
10、四边形
【解析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
【详解】
设此多边形是n边形,由题意得:
解得
故答案为:四边形.
本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
11、x≠1
【解析】
该题考查分式方程的有关概念
根据分式的分母不为0可得
X-1≠0,即x≠1
那么函数y=的自变量的取值范围是x≠1
12、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
13、2
【解析】
三、解答题(本大题共5个小题,共48分)
14、(1)反比例函数为;一次函数解析式为y=﹣x﹣1;(2)x<﹣2或0<x<1.
【解析】
(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;
(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可.
【详解】
解:(1)把A(﹣2,1)代入y=,
得m=﹣2,
即反比例函数为y=﹣,
将B(1,n)代入y=﹣,解得n=﹣2,
即B(1,﹣2),
把A(﹣2,1),B(1,﹣2)代入y=kx+b,得
解得k=﹣1,b=﹣1,
所以y=﹣x﹣1;
(2)由图象可知:当一次函数的值>反比例函数的值时,x<﹣2或0<x<1.
此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.
15、(1)A(6,0)B(0,3);(2)S△OBC=3;(3)①t=或;②t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.
【解析】
(1)利用待定系数法即可解决问题;
(2)构建方程组确定点C坐标即可解决问题;
(3)根据绝对值方程即可解决问题;
(4)分两种情形讨论:当OC为菱形的边时,可得Q1 Q2Q4(4,0);当OC为菱形的对角线时,Q3(2,0);
【详解】
(1)对于直线,令x=0得到y=3,令y=0,得到x=6,
A(6,0)B(0,3).
(2)由解得 ,
∴C(2,2),
∴
(3)①∵
∴
∵OA=3MN,
∴
解得t=或
②如图3中,由题意
当OC为菱形的边时,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);
当OC为菱形的对角线时,Q3(2,0),
∴t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.
本题考查一次函数综合题、三角形的面积、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.
16、(1)证明见解析;(2)DF=;(3)PF=.
【解析】
试题分析:(1)、根据矩形的可得AD=BC,AB=CD,根据折叠图形可得BC=EC,AE=AB,则可得AD=CE,AE=CD,从而得到三角形全等;(2)、设DF=x,则AF=CF=4-x,根据Rt△ADF的勾股定理求出x的值;(3)、根据菱形的性质进行求解.
试题解析:(1)、∵矩形ABCD ∴AD=BC,AB=CD,AB∥CD ∴∠ACD=∠CAB
∵△AEC由△ABC翻折得到 ∴AB="AE,BC=EC," ∠CAE=∠CAB ∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中∴△DEC≌△EDA(SSS);
(2)、如图1,∵∠ACD=∠CAE, ∴AF=CF, 设DF=x,则AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2, 即32+x2=(4﹣x)2, 解得;x=, 即DF=.
(3)、四边形APCF为菱形 设AC、FP相较于点O ∵FP⊥AC ∴∠AOF=∠AOP
又∵∠CAE=∠CAB, ∴∠APF=∠AFP ∴AF=AP ∴FC=AP
又∵AB∥CD ∴四边形APCF是平行四边形 又∵FP⊥AC ∴四边形APCF为菱形 PF=
考点:(1)、折叠图形的性质;(2)、菱形的性质;(3)、三角形全等;(4)、勾股定理.
17、(1)见解析 (1)1+
【解析】
试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AF,从而得证.
(1)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.
解:(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形.∴AD=BD.
∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.
在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,
∴△ADC≌△BDF(ASA).∴BF=AC.
∵AB=BC,BE⊥AC,∴AC=1AE.∴BF=1AE.
(1)∵△ADC≌△BDF,∴DF=CD=.
在Rt△CDF中,.
∵BE⊥AC,AE=EC,∴AF=CF=1.
∴AD=AF+DF=1+.
18、
【解析】
由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.
【详解】
解:∵四边形ABCD是菱形,
∴OA=AC═×4=2,OB=BD=×2=1,AC⊥BD,
∴AB==,
∴菱形的周长为4.
此题考查了菱形的性质.注意菱形的对角线互相平分且垂直且互相平分定理的应用是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据众数的定义求出x,然后根据中位数的概念求解.
【详解】
解:∵数据4,x,1,9,12的众数为1,
∴x=1,
则数据重新排列为4,1,1,9,12,
所以中位数为1,
故答案为:1.
本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
20、—1
【解析】
将x=−2代入计算即可.
【详解】
当x=−2时,f(−2)=3×(−2)+2=−1.
故答案为:−1.
本题主要考查的是求函数值,将x的值代入解析式解题的关键.
21、x>1.
【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),
∴由图象可得,当x>1时,x+b>kx+6,
即不等式x+b>kx+6的解集为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、
【解析】
根据分式值为0,分子为0,分母不为0解答即可.
【详解】
∵的值为0,
∴2a-1=0,a+2≠0,
∴a=.
故答案为:
本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.
23、x≥1
【解析】
试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
由题意得,.
考点:二次根式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
二、解答题(本大题共3个小题,共30分)
24、20,1
【解析】
首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.
【详解】
∵菱形ABCD的对角线AC,BD相交于点O,∴AC⊥BD,OA=OC,OB=OD,
∵点E,F分别是AD,DC的中点,∴OE=AD,EF=AC,
∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周长为:4×5=20;
∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面积=AC•BD=1.
本题考查了菱形的性质、三角形中位线的性质、勾股定理以及直角三角形的性质.注意根据题意求得AC与AD的长是解答此题的关键.
25、甲种运动衫按原价销售件数的最小值为20 件.
【解析】
设甲种运动衫按原价销售件数为x 件,根据商店售完这两种运动衫至少可获利2460元列不等式求解即可.
【详解】
解:设甲种运动衫按原价销售件数为x 件.
,
解得x ≥20,
答:甲种运动衫按原价销售件数的最小值为20 件.
此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
26、(1)9;(2)BE⊥AF,理由详见解析;(3) ;
【解析】
(1)根据题意可得△ABC≌△EFA,BA∥EF,且BA=EF,根据一组对边平行且相等的四边形为平行四边形即可判定四边形AFBC为平行四边形,所以S△EFA=S△BAF=S△ABC=3,即可求得四边形EFBC的面积为9;(2))BE⊥AF,证明四边形EFBA为菱形,根据菱形的性质即可证得结论;(3)如上图,作BD⊥AC于D,已知∠BEC=15°,AE=AB,根据等腰三角形的性质可得∠EBA=∠BEC=15°,由三角形外角的性质可得∠BAC=2∠BEC=30°,在Rt△BAD中,AB=2BD,设BD=x,则AC=AB=2x,根据三角形的面积公式S△ABC=AC•BD列出方程,解方程求得x的值,即可求得AC的长.
【详解】
(1)由平移的性质得,
AF∥BC,且AF=BC,△EFA≌△ABC,
∴四边形AFBC为平行四边形,
S△EFA=S△BAF=S△ABC=3,
∴四边形EFBC的面积为9;
(2)BE⊥AF,
由(1)知四边形AFBC为平行四边形,
∴BF∥AC,且BF=AC,
又∵AE=CA,
∴四边形EFBA为平行四边形,
又∵AB=AC,
∴AB=AE,
∴平行四边形EFBA为菱形,
∴BE⊥AF;
(3)如上图,作BD⊥AC于D,
∵∠BEC=15°,AE=AB,
∴∠EBA=∠BEC=15°,
∴∠BAC=2∠BEC=30°,
∴在Rt△BAD中,AB=2BD,
设BD=x,则AC=AB=2x,
∵S△ABC=3,且S△ABC=AC•BD=•2x•x=x2,
∴x2=3,
∵x为正数,
∴x=,
∴AC=2.
本题综合考查了平移的性质、平行四边形的判定与性质、菱形的判定与性质、等腰三角形及30°角直角三角形的性质等知识,熟练运用这些知识点是解决问题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年宁夏回族自治区银川六中数学九年级第一学期开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北襄阳五中学实验中学九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份宁夏回族自治区银川六中2023-2024学年数学八年级第一学期期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,若分式方程无解,则的值为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)