宁夏回族自治区银川市兴庆区唐徕回民中学2024年数学九年级第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形的边长是,一条对角线的长是,则矩形的面积是( )
A.B.C..D.
2、(4分)小红随机写了一串数“”,数字“”出现的频数是( )
A.4B.5C.6D.7
3、(4分)已知,则的关系是( )
A.B.C.D.
4、(4分)已知y=(k-3)x|k|-2+2是一次函数,那么k的值为( )
A.B.3C.D.无法确定
5、(4分)下列二次根式中,是最简二次根式的是
A.B.C.D.
6、(4分)如图,平行四边形中,,,,动点从点出发,沿运动至点停止,设运动的路程为,的面积为,则与的函数关系用图象表示正确的是( )
A.B.
C.D.
7、(4分)如图,中,于点,点为的中点,连接,则的周长是( )
A.4+2B.7+C.12D.10
8、(4分)下列命题是真命题的是( )
A.方程的二次项系数为3,一次项系数为-2
B.四个角都是直角的两个四边形一定相似
C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
D.对角线相等的四边形是矩形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)正十边形的外角和为__________.
10、(4分)如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.
11、(4分)一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)
12、(4分)已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.
13、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:2×÷3﹣(﹣2.
15、(8分)计算:5÷﹣3+2.
16、(8分)已知:如图,一块Rt△ABC的绿地,量得两直角边AC=8cm,BC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长.
(1)在图1中,当AB=AD=10cm时,△ABD的周长为 .
(2)在图2中,当BA=BD=10cm时,△ABD的周长为 .
(3)在图3中,当DA=DB时,求△ABD的周长.
17、(10分)化简与解方程:
(1).
(2)
18、(10分)在甲村至乙村的公路上有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为300米,与公路上的另一停靠站的距离为400米,且,如图所示为了安全起见,爆破点周围半径250米范围内不得进入,问在进行爆破时,公路段是否因为有危险而需要暂时封锁?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
20、(4分)计算: =_________.
21、(4分)如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.
22、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
23、(4分)计算:(1)=______;(2)=______;(3) =______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,一次函数y=kx+3的图象与反比例函数y= (x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C.点D,且S△DBP=27,
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式
25、(10分)化简求值:(﹣1)÷,其中a=2﹣ .
26、(12分)A、B 两乡分别由大米 200 吨、300 吨.现将这些大米运至 C、D 两个粮站储存.已知 C 粮站可 储存 240 吨,D 粮站可储存 200 吨,从 A 乡运往 C、D 两处的费用分别为每吨 20 元和 25 元,B 乡 运往 C、D 两处的费用分别为每吨 15 元和 18 元.设 A 乡运往 C 粮站大米 x 吨.A、B 两乡运往两 个粮站的运费分别为 yA、yB 元.
(1)请填写下表,并求出 yA、yB 与 x 的关系式:
(2)试讨论 A、B 乡中,哪一个的运费较少;
(3)若 B 乡比较困难,最多只能承受 4830 元费用,这种情况下,运输方案如何确定才能使总运费 最少?最少的费用是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.
【详解】
由题意及勾股定理得矩形另一条边为==4
所以矩形的面积=44=16.
故答案选C.
本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.
2、D
【解析】
根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.
【详解】
∵一串数“”中,数字“3”出现了1次,
∴数字“3”出现的频数为1.
故选D.
此题考查频数与频率,解题关键在于掌握其概念
3、D
【解析】
根据a和b的值去计算各式是否正确即可.
【详解】
A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确;
故答案为:D.
本题考查了实数的运算问题,掌握实数运算法则是解题的关键.
4、C
【解析】
根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.
【详解】
一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
所以|k|-2=1,
解得:k=±2,
因为k-2≠0,所以k≠2,
即k=-2.
故选:C.
本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
5、B
【解析】
根据最简二次根式的定义对各选项分析判断利用排除法求解.
【详解】
A、不是最简二次根式,错误;
B、是最简二次根式,正确;
C、不是最简二次根式,错误;
D、不是最简二次根式,错误,
故选B.
本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
6、D
【解析】
当点E在BC上运动时,三角形的面积不断增大,当点E在DC上运动时,三角形的面积不变,当点E在AD上运动时三角形的面积不等减小,然后计算出三角形的最大面积即可得出答案.
【详解】
当点E在BC上运动时,三角形的面积不断增大,最大面积= ×3××4=3;
当点E在DC上运动时,三角形的面积为定值3.
当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为0.
故选:D.
此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
7、D
【解析】
根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.
【详解】
∵在△ABC中,AB=AC=6,AE平分∠BAC,
∴BE=CE=BC=4,
又∵D是AB中点,
∴BD=AB=3,
∴DE是△ABC的中位线,
∴DE=AC=3,
∴△BDE的周长为BD+DE+BE=3+3+4=1.
故选:D.
本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.
8、A
【解析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A、正确.
B、错误,对应边不一定成比例.
C、错误,不一定中奖.
D、错误,对角线相等的四边形不一定是矩形.
故选:A.
此题考查命题与定理,熟练掌握基础知识是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、360°
【解析】
根据多边形的外角和是360°即可求出答案.
【详解】
∵任意多边形的外角和都是360°,
∴正十边形的外交和是360°,
故答案为:360°.
此题考查多边形的外角和定理,熟记定理是解题的关键.
10、(3,0)
【解析】
连接AA′,BB′,分别作AA′,BB′的垂直平分线,两垂直平分线的交点即是旋转中心,然后写出坐标即可.
【详解】
连接旋转前后的对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线相交的地方就是旋转中心.
所以,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.
11、增大
【解析】
根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.
【详解】
∵一次函数图象经过一、三、四象限,
∴>0,b<0,
∴,
∴又x>0,
∴反比例函数图象在第四象限,且y随着x的增大而增大,
故答案为:增大.
本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.
12、
【解析】
根据即可列式求解.
【详解】
如图,∵
∴
∴点在上,
∴,
故.
此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、三角形的面积公式.
13、
【解析】
由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.
故答案为
三、解答题(本大题共5个小题,共48分)
14、
【解析】
利用二次根式的乘除法则和完全平方公式计算.
【详解】
原式=2××× -(2-2+3)-2
=-1+2-2
=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
15、8
【解析】
试题分析:用二次根式的除法则运算,然后化简后合并即可;
试题解析:
5÷﹣3+2
=
=8.
16、(1)32m;(2)(20+4)m;(3)
【解析】
(1)利用勾股定理得出DC的长,进而求出△ABD的周长;
(2)利用勾股定理得出AD的长,进而求出△ABD的周长;
(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.
【详解】
:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴
则△ABD的周长为:10+10+6+6=32(m).
故答案为:32m;
(2)如图2,当BA=BD=10m时,
则DC=BD-BC=10-6=4(m),
故
则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;
故答案为:(20+4)m;
(3)如图3,∵DA=DB,
∴设DC=xm,则AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周长为:AD+BD+AB=2
此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.
17、(1);(2)x=1.
【解析】
根据分式的加减法则进行计算即可
【详解】
解:(1)原式=
=
=
= ;
(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,
解得:x=1,
检验:当x=1时,x﹣2=﹣1≠0,
所以分式方程的解为x=1.
本题考查分式的加减法,掌握运算法则是解题关键
18、公路段需要暂时封锁.理由见解析.
【解析】
如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.
【详解】
公路段需要暂时封锁.理由如下:
如图,过点作于点.
因为米,米,,
所以由勾股定理知,即米.
因为,
所以(米).
由于240米<250米,故有危险,因此公路段需要暂时封锁.
本题考查运用勾股定理,掌握勾股定理的运用是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
20、
【解析】
先利用二次根式的性质,再判断的大小去绝对值即可.
【详解】
因为,
所以
故答案为:
此题考查的是二次根式的性质和去绝对值.
21、
【解析】
过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.
【详解】
解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=5,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=25,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=25,
,即DQ+PQ的最小值为.
本题考查了轴对称-最短路线问题、勾股定理、作图与基本作图等知识点的应用,解此题的关键是根据轴对称的性质找出P'点,题型较好,难度较大.
22、(4,0)
【解析】
根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.
【详解】
解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,
∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,
∴点D的坐标为:(0,8),
∴OD=8,
∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,
∴CD=5×2=10,
∴AD=10,
∵∠AOD=90°,OD=8,AD=10,
∴AO=,
∵AB=10,
∴OB=10−AO=10−6=4,
∴点B的坐标为(4,0),
故答案为:(4,0)
本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
23、
【解析】
根据二次根式的乘法公式:和除法公式计算即可.
【详解】
解:(1);
(2);
(3).
故答案为:;;.
此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)(0,3);(2)y=−x+3,y=−
【解析】
(1)根据一次函数与y轴的交点,从而得出D点的坐标.
(2)根据在Rt△COD和Rt△CAP中,,OD=3,再根据S△DBP=27,从而得
【详解】
(1)∵一次函数y=kx+3与y轴相交,
∴令x=0,解得y=3,得D的坐标为(0,3);
(2)∵OD⊥OA,AP⊥OA,
∠DCO=∠ACP,
∠DOC=∠CAP=90°,
∴Rt△COD∽Rt△CAP,则,OD=3,
∴AP=OB=6,
∴DB=OD+OB=9,
在Rt△DBP中,∴ =27,
即 ,
∴BP=6,故P(6,−6),
把P坐标代入y=kx+3,得到k=− ,
则一次函数的解析式为:y=−x+3;
把P坐标代入反比例函数解析式得m=−36,
则反比例解析式为:y=− ;
此题考查反比例函数与一次函数的交点问题,解题关键在于根据一次函数与y轴的交点进行求解
25、,
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
【详解】
解:
,
当时,原式.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
26、(1)表见解析;yA=20x+25×(200−x)=−5x+5000(0⩽x⩽200);yB=15×(240−x)+18×(x+60)=3x+4680(0⩽x⩽200);(2)当x<40时,B乡运费少;当x=40时,A. B两乡运费一样多;当x>40时,A乡运费少;(3)当x=50时,总运费最低,最低费用为9580元.
【解析】
(1)结合已知完善表格,再根据运费=运输单价×数量,得出yA、yB与x的关系式;
(2)令yA=yB,找出二者运费相等的x,以此为界分成三种情况;
(3)由B乡运费最多为4830元,找出x的取值范围,再根据yA+yB的单调性,即可得知当x取什么值时,总运费最低.
【详解】
(1)根据已知补充表格如下:
A乡运往两个粮站的运费yA=20x+25×(200−x)=−5x+5000(0⩽x⩽200);
B乡运往两个粮站的运费yB=15×(240−x)+18×(x+60)=3x+4680(0⩽x⩽200).
(2)令yA=yB,即−5x+5000=3x+4680,
解得:x=40.
故当x<40时,B乡运费少;当x=40时,A. B两乡运费一样多;当x>40时,A乡运费少.
(3)令yB⩽4830,即3x+4680⩽4830,
解得:x⩽50.
总运费y=yA+yB=−5x+5000+3x+4680=−2x+9680,
∵−2<0,
∴y=−2x+9680单调递减.
故当x=50时,总运费最低,最低费用为9580元.
此题考查一次函数的应用,解题关键在于根据题意列出方程.
题号
一
二
三
四
五
总分
得分
C 站
D 站
总计
A 乡
x 吨
200 吨
B 乡
300 吨
总计
240 吨
260 吨
500 吨
01,2023年宁夏回族自治区银川市兴庆区唐徕回民中学西校区中考数学第四次联考模拟预测题: 这是一份01,2023年宁夏回族自治区银川市兴庆区唐徕回民中学西校区中考数学第四次联考模拟预测题,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2023-2024学年宁夏回族自治区银川市兴庆区唐徕回民中学数学八年级第一学期期末统考试题含答案: 这是一份2023-2024学年宁夏回族自治区银川市兴庆区唐徕回民中学数学八年级第一学期期末统考试题含答案,共7页。试卷主要包含了如图所示等内容,欢迎下载使用。
2022-2023学年宁夏回族自治区银川市兴庆区唐徕回民中学数学七下期末综合测试模拟试题含答案: 这是一份2022-2023学年宁夏回族自治区银川市兴庆区唐徕回民中学数学七下期末综合测试模拟试题含答案,共6页。