2024-2025学年梅州市重点中学数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是( )
A.2B.3C.4D.6
2、(4分)为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为,表示点B的坐标为,则表示其他位置的点的坐标正确的是( )
A.B.C.D.
3、(4分)实数a、b在数轴上对应的位置如图所示,则等于
A.B.C.D.
4、(4分)点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为( )
A.B.C.D.
5、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为( )
A.3B.C.2或3D.3或
6、(4分)如图,设甲图中阴影部分的面积为S1,乙图中阴影部分的面积为S2,k=(a>b>0),则有( )
A.k>2B.1<k<2C.<k<1D.0<k<
7、(4分)下列根式中是最简二次根式的是
A.B.C.D.
8、(4分)若a<+2<b,其中a,b是两个连续整数,则a+b=( )
A.20B.21C.22D.23
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
10、(4分)如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.
11、(4分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
12、(4分)已知直线不经过第一象限,则的取值范围是_____________。
13、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数的图象经过点.
(1)求此函数的解析式;
(2)若点为此一次函数图象上一动点,且△的面积为2,求点的坐标.
15、(8分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
16、(8分)已知一次函数y=(3-k)x-2k2+18.
(1)k为何值时,它的图象经过原点?
(2)k为何值时,图象经过点(0,-2)?
(3)k为何值时,y随x的增大而减小?
17、(10分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
18、(10分)对于实数a,b,定义运算“*”,a*b=例如4*1.因为4>1,所以4*1=41-4×1=8,若x1、x1是一元二次方程x1-9x+10=0的两个根,则x1*x1=__.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC,得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2…照此规律作下去,则C2018=_____.
20、(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.
21、(4分)如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.
22、(4分)如图,在直角三角形中,,、、分别是、、的中点,若=6厘米,则的长为_________.
23、(4分)将直线y=2x-3向上平移5个单位可得______直线.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:x2- 4x= 1.
25、(10分)计算:
(1)(﹣15)×××(﹣×)
(2)++
(3)
(4)(﹣3)2+﹣(1+2)﹣(﹣3)0
26、(12分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据角平分线的性质进行求解即可得.
【详解】
∵BG 是∠ABC 的平分线,DE⊥AB,DF⊥BC,
∴DF=DE=6,
故选D.
本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.
2、B
【解析】
正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.
【详解】
建立平面直角坐标系,如图:
则 .
表示正确的点的坐标是点D.
故选B.
本题主要考查坐标确定位置,确定坐标原点和x,y轴的位置及方向,正确建立平面直角坐标系是解题关键.
3、A
【解析】
直接利用数轴得出,,进而化简得出答案.
【详解】
解:由数轴可得:,,
则原式.
故选A.
此题主要考查了二次根式的性质与化简,正确得出各项的符号是解题关键.
4、A
【解析】
解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.
5、D
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示。
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC=
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A. B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5−3=2,
设BE=x,则EB′=x,CE=4−x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4−x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如答图2所示。
此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为或3.
故选:D.
此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.
6、B
【解析】
根据正方形和矩形的面积公式分别表示出两个阴影部分面积,即可求出所求.
【详解】
由题意得:甲图中阴影部分的面积为,乙图中阴影部分的面积为
故选:B.
本题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
7、B
【解析】
A.=,故此选项错误;
B.是最简二次根式,故此选项正确;
C.=3,故此选项错误;
D.=,故此选项错误;
故选B.
考点:最简二次根式.
8、B
【解析】
直接利用8<<9,进而得出a,b的值即可得出答案.
【详解】
解∵8<<9,
∴8+2<+2<9+2,
∵a<+2<b,其中a,b是两个连续整数,
∴a=10,b=11,
∴a+b=10+11=1.
故选:B.
此题主要考查了估算无理数的大小,得出a,b的值是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、六
【解析】
n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.
【详解】
设多边形的边数为n,依题意,得:
(n﹣2)•180°=2×360°,
解得n=6,
故答案为:六.
本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.
10、70
【解析】
首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.
【详解】
由旋转的性质,得△ABC≌△A′B′C,
∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,
∴∠CAA′=∠CA′A=45°
∵
∴∠BAC=25°
∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°
故答案为:70.
此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.
11、1.
【解析】
首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.
【详解】
2x﹣a≤﹣1,
x≤,
∵解集是x≤1,
∴=1,解得:a=1,
故答案为1.
此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.
12、
【解析】
当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.
【详解】
解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;
当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,
综上,的取值范围是:.
本题考查了一次函数系数与象限位置的关系,注意分类讨论.
13、1.
【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.
【详解】
解:如图,延长BD交AB于F,
∵AD平分∠BAC,
∴∠BAD=∠FAD,
∵BD⊥AD,
∴∠ADB=∠ADF=90°,
在△ADF和△ADB中
∴△ADF≌△ADB(ASA),
∴AF=AB,BD=FD,
∴CF=AC-AB=6-4=2cm,
又∵点E为BC的中点,
∴DE是△BCF的中位线,
.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)一次函数的解析式为
(2)
【解析】试题分析:(1),根据题意可设一次函数的解析式y=kx+b(k≠0),将A,B两点代入可求出k,b,进而可求出函数表达式;
对于(2),设点P的坐标为(a,-2a+4),结合A点的坐标可得OA的长,继而根据△POA的面积为2可得到|a|的值,据此可得到点P的坐标.
试题解析:(1)设解析式为y=kx+b(k≠0)
∵一次函数的图象经过点, ,
∴,解得,
∴一次函数的解析式为
(2)∵
当时,
当时,
15、(1)证明见解析;(2)成立,证明见解析.
【解析】
解:(1)∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE
∴∠MEA=∠AFO,
∴Rt△BOE≌ Rt△AOF
∴OE=OF
(2)OE=OF成立
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠E+∠OBE
又∵∠MBF=∠OBE
∴∠F=∠E
∴Rt△BOE≌Rt△AOF
∴OE=OF
16、(1)k=-3;(2) k=±;(3)k>3
【解析】
(1)将x=0,y=0代入解析式,即可确定k的值;(2)将x=0,y=-2代入解析式,即可确定k的值;(3)根据一次函数的性质,即3-k<0满足题意,解不等式即可.
【详解】
解(1)由题意得:-2k2+18=0
解得:k=±3
又∵3-k≠0
∴k≠3
∴k=-3
即当k=-3时,函数图象经过原点
(2)由题意得:-2=(3-k)·0-2k2+18=0
解得:k=±
(3)由题意得:3-k<0
解得:k>3
即当k>3时,y随x的增大而减小
本题考查了一次函数图象上点的坐标特征及函数性质,是基础题型,要熟练掌握此类题目的解法.
17、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
18、4
【解析】
试题分析:先求出方程的两个根,再利用新定义的运算法则计算,计算时需要分类讨论.
试题解析:
x1-7x+11=0,(x-4)(x-3)=0,
x-4=0或x-3=0,∴x1=4,x1=3或x1=3,x1=4.
当x1=4,x1=3时,x1*x1=41-4×3=4,
当x1=3,x1=4时,x1*x1=3×4-41=-4,∴x1*x1的值为4或-4.
点睛:定义新运算是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特殊的运算符号,如:*、△、⊙,等,解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2018的值
【详解】
解:∵E是BC的中点,ED∥AB,
∴DE是△ABC的中位线,
∴DE=AB=,AD=AC=,
∵EF∥AC,
∴四边形EDAF是菱形,
∴C1=4×;
同理求得:C2=4×;
…
,
.
故答案为:.
本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.
20、k>﹣1且k≠1.
【解析】
由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.
【详解】
解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,
∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,
∴k>﹣1,
∵x的一元二次方程kx2﹣2x﹣1=1
∴k≠1,
∴k的取值范围是:k>﹣1且k≠1.
故答案为:k>﹣1且k≠1.
此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:
(1)△>1⇔方程有两个不相等的实数根;
(2)△=1⇔方程有两个相等的实数根;
(3)△<1⇔方程没有实数根.
21、
【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.
【详解】
解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.
∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,
∴△MED和△DEF均为等腰直角三角形.
∵DE=DF,∠EDH=∠FDH=45°,
∴DH⊥EF,EH=HF,
∴FH∥BC.
设ME=HE=FH=x,则GH=3﹣x.
由FH∥BC可知:,
即,解得:,
∴.
在Rt△AME中,.
故答案为:.
本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.
22、6厘米
【解析】
根据直角三角形斜边中线等于斜边一半算出AB,再根据中位线的性质求出EF即可.
【详解】
∵∠BCA=90°,且D是AB的中点,CD=6,
∴AB=2CD=12,
∵E、F是AC、BC的中点,
∴EF=.
故答案为:6厘米
本题考查直角三角形中线的性质、中位线的性质,关键在于熟练掌握相关基础知识.
23、y=1x+1
【解析】
根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.
【详解】
解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,
那么新直线的k=1,b=-3+5=1.
∴新直线的解析式为y=1x+1.
故答案是:y=1x+1.
此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、x1=2+,x2=2-
【解析】
试题分析:方程两边都加上一次项系数一半的平方,进行配方,两边直接开平方即可求得方程的解.
试题解析:x2-4x=1
x2-4x+4=1+4
(x-2)2=5
x-2=
即:x1=2+,x2=2-
考点:解一元二次方程---配方法.
25、(1)60;(2)5;(3)-1;(4)7.
【解析】
(1) 先根据二次根式进行化简,再进行乘法运算,即可得到答案;
(2)先根据二次根式进行化简,再进行加法运算,即可得到答案;
(3)将变形为,再根据平方差公式进行计算即可得到答案;
(4)根据二次根式、零指数幂进行化简,再进行加减运算即可得到答案.
【详解】
(1)(﹣15)×××(﹣×)
=(﹣15)×××(﹣×)
=15××
=60
(2)5++
=5++
=++
=5
(3)
=
=
=-1
(4)(﹣3)2+﹣(1+2)﹣(﹣3)0
=9+-1-2-1
=7
本题考查二次根式、平方差公式和零指数幂,解题的关键是掌握二次根式、平方差公式和零指数幂.
26、 (1)见解析;(2)见解析.
【解析】
试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;
(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.
试题解析:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;
(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.
考点:矩形的性质;平行四边形的判定与性质;菱形的判定;探究型.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年焦作市重点中学数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年焦作市重点中学数学九年级第一学期开学教学质量检测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。