人教版(2024)七年级上册(2024)6.3 角备课ppt课件
展开1. 在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法.2. 认识角的度量单位度、分、秒,会进行简单的换算和角度计算.3. 提高学生的识图能力,学会用运动变化的观点看问题.
观察下面的实物,你发现这些实物能抽象出什么样的几何图形?
知识点1 角的概念
有公共端点的两条射线组成的图形叫作角,这个公共端点是角的顶点,这两条射线是角的两条边.
角也可以看成是由一条射线绕着它的端点旋转而成的.
如果射线OB继续旋转,还会形成什么角呢?
一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫作平角.
当终边又和始边重合时,所成的角叫作周角.
归纳:角的概念(1)静态:角由两条具有公共端点的射线组成.(2)动态:角也可以看成是由一条射线绕着它的端点旋转而成的.
注意:(1)顶点、两边是构成角的两个要素:每个角都有两条边,这两条边都是射线;角的两边有公共端点,即顶点.(2)角的大小与边的长短无关,只与构成角的两边张开的幅度有关.
分析:若两条射线没有公共点,则不能组成角;角的两边为射线,需将射线绕端点旋转,才能形成角;角的大小只与构成角的两边的射线张开幅度有关;平角和周角都是角,平角的始边和终边互为反向延长线,周角的终边和始边重合,平角不是直线,周角不是射线.
例1 给出下列说法:①两条射线组成的图形是角;②将一条线段绕它的一个端点旋转得到的图形是角;③把一个角放在放大镜下观察,角的度数不变;④平角是一条直线,周角是一条射线.其中,正确说法的个数有( ) A.1个 B.2个 C.3个 D.4个
知识点2 角的表示
注意:用数字或希腊字母表示角时,一定要在图形中用角弧标出.
注意:必须把顶点字母放在中间
(1)用适当的方式分别表示图中的每个角.
解:∠BAC ,∠BAD ,∠CAD.
(2)图中,∠BAC,∠CAD和∠BAD能用∠A来表示吗?
归纳:
知识点3 角的度量和换算
我们常用量角器量角,度、分、秒是常用的角的度量单位.如图,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫作1分的角,记作1′;把1分的角60等分,每一份叫作1秒的角,记作1″.
1周角= °;1平角= °.
1°= ′;1′= ″.
∠α的度数是48度56分37秒,
记作:∠α=48°56′37″.
角的度、分、秒是60进制,这和计量时间的时、分、秒是一样的.
以度、分、秒为单位的角的度量制,叫作角度制.
此外,还有其他度量角的单位制. 例如,以后将要学到的以弧度为基本度量单位的弧度制,在军事上经常使用的角的密位制,等等.
(1)1.45°等于多少分?等于多少秒?(2)1 800″ 等于多少分?等于多少度?
解:(1)60′×1.45=87′,
即1.45°=87′=5 220″;
60″×87=5 220″,
即1 800″=30′=0.5°.
例4 如图,货轮O在航行过程中,发现灯塔A 在它南偏东 60°的方向上.同时,在它北偏东40°、南偏西10°、西北(北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.
解:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB的方向就是北偏东40°,即客轮B所在的方向.
同理可画出:表示货轮C(南偏西10°)、海岛D(西北(北偏西45°))的方向的射线.
在航行、测绘等工作中,经常要用到表示方向的角.“北偏东30°”和“南偏西60°”是用来表示方向的角,叫作方向角.
注意: (1)方向角通常先写北或南,再写偏东或偏西;(2)用角表示的四个特殊方向:东北方向(北偏东45°)、西北方向(北偏西45°)、东南方向(南偏东45°)、西南方向(南偏西45°).
1.下列说法正确的是( ) A.两条射线组成的图形叫作角 B.一条射线表示一个周角 C.直线是一个平角 D.角的大小与角的两边画出部分的长短无关
2.下列能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )
3.将图中的角用不同方法表示出来,并填写下表:
4.(1)0.25°等于多少分?等于多少秒?(2)2 700″ 等于多少分?等于多少度?
解:(1)60′×0.25=15′,
即 0.25°=15′=900″;
60″×15=900″,
即2 700″=45′=0.75°.
4.(3)计算:180°-79°19′;
解:(3)180°-79°19′ =(179°+60′)-(79°+19′) =(179°-79°)+(60′-19′) =100°+41′ =100°41′.
5.如图,请根据 A,B,C,D各点的方向填空:(1)射线OA表示 方向;(2)射线OB表示 方向;(3)射线OC表示 方向; (4)射线OD表示 方向.
北偏东45°(或东北)
南偏西45°(或西南)
人教版(2024)七年级上册(2024)6.3 角教学演示课件ppt: 这是一份人教版(2024)七年级上册(2024)<a href="/sx/tb_c4050894_t3/?tag_id=26" target="_blank">6.3 角教学演示课件ppt</a>,共19页。PPT课件主要包含了学习目标,课堂导入,互为余角或互余,同角的余角相等,∠290°-∠1,∠390°-∠1,等角的余角相等,所以∠2=∠3,=90°,随堂练习等内容,欢迎下载使用。
初中数学人教版(2024)七年级上册(2024)6.3 角课文内容课件ppt: 这是一份初中数学人教版(2024)七年级上册(2024)<a href="/sx/tb_c4050894_t3/?tag_id=26" target="_blank">6.3 角课文内容课件ppt</a>,共23页。PPT课件主要包含了学习目标,课堂导入,②叠合法,∠ABC>∠DEF,度量法,叠合法,反过来,随堂练习等内容,欢迎下载使用。
初中数学人教版(2024)七年级上册(2024)6.3 角教学ppt课件: 这是一份初中数学人教版(2024)七年级上册(2024)<a href="/sx/tb_c4050894_t3/?tag_id=26" target="_blank">6.3 角教学ppt课件</a>,共35页。PPT课件主要包含了学习目标,情境导入,探究新知,角的静态定义,角的动态定义,归纳总结,角的表示方法,角的度量工具量角器,角的度量,例题练习等内容,欢迎下载使用。