初中人教版(2024)22.3 实际问题与二次函数教学演示ppt课件
展开写出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最值.(1)y=x2-4x-5; (配方法) (2)y=-x2-3x+4.(公式法)
解:(1)开口方向:向上;对称轴:直线x=2; 顶点坐标:(2,-9);最小值:-9;
引例 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动时间是多少时,小球最高?小球运动中的最大高度是多少?
知识点一:求二次函数的最大(或最小)值
先判断 是否在限定范围内,若在,则二次函数在x= 时,取得最大(或小)值;若不在,则根据二次函数的增减性确定二次函数的最值.
试一试 根据探究得出的结论,解决引例的问题:
可以借助函数图象解决这个问题.画出函数h=30t-5t2(0≤t≤6)的图象.可以看出,这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t取顶点的横坐标时,这个函数有最大值.
所以,小球运动的时间是 3 s 时,小球最高.小球运动中的最大高度是 45 m.
1.配方,求二次函数的顶点坐标及对称轴.
2.画出函数图象,标明对称轴,并在横坐标上标明x的取值范围.
3.判断,判断x的取值范围与对称轴的位置关系.根据二次函数的性质,确定当x取何值时函数有最大或最小值.然后根据x的值,求出函数的最值.
例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长 l 的变化而变化.当 l 是多少时,场地的面积S最大?
知识点二:二次函数与几何图形面积的最值
问题1 矩形面积公式是什么?
问题2 如何用l表示其邻边的长?
问题3 面积S的函数关系式是什么?
邻边长为(30-l)m
S=(30-l)l=-l2+30l
也就是说,当l是15m时,场地的面积S最大.
例2 利用一面墙(墙长30 m),用80 m长的篱笆围成一个矩形场地ABCD,求该矩形场地的最大面积.
解:设矩形场地的面积为S m2,平行于墙的一边BC的长为x m.由题意,得S= x·(80-x)=- (x-40)2+800,∴当x=40时,S最大值=800,此时 (80-x)=20,符合题意.∴当所围成的矩形场地ABCD的长为40 m,宽为20 m时,其面积最大,最大面积为800 m2.
你认为上述解答过程有问题吗?若有问题,请说明理由,并给出正确的解答过程.
解:设矩形场地的面积为S m2,平行于墙的一边BC的长为x m.由题意,得S= x·(80-x)=- (x-40)2+800,∵ 墙长30m ∴ 0
1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.
1.用52 cm的铁丝弯成一个矩形,设矩形的一边长为x cm,则与其相邻的一边长为_____ cm,矩形的面积S(cm2)关于x(cm)的函数关系式是S=_______,自变量x的取值范围为_______.当x=____时,该矩形的面积最大,为____ cm2.
2. 某水产养殖户用长40 m的围网,在水库中围一块矩形的水面,投放鱼苗. 要使围成的水面面积最大,则它的边长应是多少米?它的最大面积是多少平方米?
解:设围成的矩形水面的一边长为x m,则另一边长为(20-x)m.矩形水面面积S=x(20-x) =-(x-10)2+100 (0
解:设运动时间为t s.根据题意,得
因此,当t=2时,△PBQ的面积最大,为4 cm2.
初中数学人教版九年级上册22.3 实际问题与二次函数教学ppt课件: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数教学ppt课件,文件包含223实际问题与二次函数第1课时二次函数与图形面积上课课件pptx、223实际问题与二次函数第1课时二次函数与图形面积教案docx、223实际问题与二次函数第1课时同步练习docx等3份课件配套教学资源,其中PPT共26页, 欢迎下载使用。
初中数学人教版九年级上册22.3 实际问题与二次函数图文课件ppt: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数图文课件ppt,共27页。PPT课件主要包含了导入新课,情景引入,讲授新课,合作探究,最小值,最大值,∵0≤3≤6,典例精析,方法归纳,矩形面积长×宽等内容,欢迎下载使用。
2020-2021学年22.3 实际问题与二次函数教案配套ppt课件: 这是一份2020-2021学年22.3 实际问题与二次函数教案配套ppt课件,共17页。PPT课件主要包含了学习目标,新课导入,新课讲解,课堂小结,当堂小练,拓展与延伸,布置作业,几何面积最值问题,一个关键,一个注意等内容,欢迎下载使用。